Olivier Govaere

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4514910/publications.pdf Version: 2024-02-01

OLIVIED COVAEDE

#	Article	IF	CITATIONS
1	Caucasian lean subjects with non-alcoholic fatty liver disease share long-term prognosis of non-lean: time for reappraisal of BMI-driven approach?. Gut, 2022, 71, 382-390.	12.1	113
2	Increased serum miR-193a-5p during non-alcoholic fatty liver disease progression: Diagnostic and mechanistic relevance. JHEP Reports, 2022, 4, 100409.	4.9	20
3	Macrophage scavenger receptor 1 mediates lipid-induced inflammation in non-alcoholic fatty liver disease. Journal of Hepatology, 2022, 76, 1001-1012.	3.7	54
4	Metabolic signatures across the full spectrum of non-alcoholic fatty liver disease. JHEP Reports, 2022, 4, 100477.	4.9	31
5	Pharmacological testing of therapeutics using normothermic machine perfusion: A pilot study of 2,4â€dinitrophenol delivery to steatotic human livers. Artificial Organs, 2022, 46, 2201-2214.	1.9	4
6	NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature, 2021, 592, 450-456.	27.8	649
7	Transcriptomics Identify Thrombospondinâ€⊋ as a Biomarker for NASH and Advanced Liver Fibrosis. Hepatology, 2021, 74, 2452-2466.	7.3	71
8	Key features of the environment promoting liver cancer in the absence of cirrhosis. Scientific Reports, 2021, 11, 16727.	3.3	12
9	Diagnostic accuracy of elastography and magnetic resonance imaging in patients with NAFLD: A systematic review and meta-analysis. Journal of Hepatology, 2021, 75, 770-785.	3.7	149
10	Long-term outcomes and predictive ability of non-invasive scoring systems in patients with non-alcoholic fatty liver disease. Journal of Hepatology, 2021, 75, 786-794.	3.7	100
11	Peptide-based urinary monitoring of fibrotic nonalcoholic steatohepatitis by mass-barcoded activity-based sensors. Science Translational Medicine, 2021, 13, eabe8939.	12.4	17
12	Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis. Science Translational Medicine, 2020, 12, .	12.4	205
13	Presence of Serum Antinuclear Antibodies Does Not Impact Long-Term Outcomes in Nonalcoholic Fatty Liver Disease. American Journal of Gastroenterology, 2020, 115, 1289-1292.	0.4	9
14	Macrophage scavenger receptor 1 mediates lipid-induced inflammation in human obesity-related non-alcoholic fatty liver disease. Journal of Hepatology, 2020, 73, S20-S21.	3.7	0
15	A transcriptomic signature predicting fibrosis progression in a large European cohort of patients with histologically characterised NAFLD. Journal of Hepatology, 2020, 73, S109-S110.	3.7	Ο
16	Macrophages and scavenger receptors in obesityâ€associated nonâ€alcoholic liver fatty disease (NAFLD). Scandinavian Journal of Immunology, 2020, 92, e12971.	2.7	9
17	Metabolism of human liver on a genome scale in non-alcoholic fatty liver disease. Journal of Hepatology, 2020, 73, S671-S672.	3.7	0
18	Metabolomics approaches to identify biomarkers of non-alcoholic fatty liver disease. Journal of Hepatology, 2020, 73, S438.	3.7	0

OLIVIER GOVAERE

#	Article	IF	CITATIONS
19	Liver Phenotypes of European Adults Heterozygous or Homozygous for Piâ^—Z Variant of AAT (Piâ^—MZ vs) Tj E	TQq131 0.1	784314 rgBT
20	Bone morphogenetic protein 8B promotes the progression of non-alcoholic steatohepatitis. Nature Metabolism, 2020, 2, 514-531.	11.9	31
21	Genome-wide association study of non-alcoholic fatty liver and steatohepatitis in a histologically characterised cohortâ [~] †. Journal of Hepatology, 2020, 73, 505-515.	3.7	279
22	Performance of the PRO-C3 collagen neo-epitope biomarker in non-alcoholic fatty liver disease. JHEP Reports, 2019, 1, 188-198.	4.9	86
23	FRI-359-Ductular reaction predicts the progression of non-alcoholic fatty liver disease. Journal of Hepatology, 2019, 70, e552-e553.	3.7	0
24	The CCR2+ Macrophage Subset Promotes Pathogenic Angiogenesis for Tumor Vascularization in Fibrotic Livers. Cellular and Molecular Gastroenterology and Hepatology, 2019, 7, 371-390.	4.5	71
25	From NASH to HCC: current concepts and future challenges. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 411-428.	17.8	872
26	A Bioreactor Technology for Modeling Fibrosis in Human and Rodent Precision ut Liver Slices. Hepatology, 2019, 70, 1377-1391.	7.3	66
27	Targeting mTOR and Src restricts hepatocellular carcinoma growth in a novel murine liver cancer model. PLoS ONE, 2019, 14, e0212860.	2.5	18
28	YAP and TAZ Heterogeneity in Primary Liver Cancer: An Analysis of Its Prognostic and Diagnostic Role. International Journal of Molecular Sciences, 2019, 20, 638.	4.1	44
29	Highâ€ŧhroughput sequencing identifies aetiologyâ€dependent differences in ductular reaction in human chronic liver disease. Journal of Pathology, 2019, 248, 66-76.	4.5	37
30	Therapeutic inhibition of inflammatory monocyte recruitment reduces steatohepatitis and liver fibrosis. Hepatology, 2018, 67, 1270-1283.	7.3	388
31	Hepatic progenitor cells in metastatic liver carcinomas. Histopathology, 2018, 72, 1060-1065.	2.9	3
32	TGFβ inhibition restores a regenerative response in acute liver injury by suppressing paracrine senescence. Science Translational Medicine, 2018, 10, .	12.4	161
33	Human skin-derived precusor cells: A potential source for cellular therapy of the liver. Journal of Hepatology, 2018, 68, S415.	3.7	0
34	The PDGFRα-laminin B1-keratin 19 cascade drives tumor progression at the invasive front of human hepatocellular carcinoma. Oncogene, 2017, 36, 6605-6616.	5.9	47
35	Comprehensive DNA methylation study identifies novel progression-related and prognostic markers for cutaneous melanoma. BMC Medicine, 2017, 15, 101.	5.5	62
36	Expression profiling of budding cells in colorectal cancer reveals an EMT-like phenotype and molecular subtype switching. British Journal of Cancer, 2017, 116, 58-65.	6.4	124

OLIVIER GOVAERE

#	Article	IF	CITATIONS
37	RNA-sequencing-based comparative analysis of human hepatic progenitor cells and their niche from alcoholic steatohepatitis livers. Cell Death and Disease, 2017, 8, e3164-e3164.	6.3	11
38	The footprint of the ageing stroma in older patients with breast cancer. Breast Cancer Research, 2017, 19, 78.	5.0	22
39	Identification of Circulating Fibrocytes and Dendritic Derivatives in Corneal Endothelium of Patients With Fuchs' Dystrophy. , 2017, 58, 670.		17
40	The liverâ€specific microRNAâ€122*, the complementary strand of microRNAâ€122, acts as a tumor suppressor by modulating the p53/mouse double minute 2 homolog circuitry. Hepatology, 2016, 64, 1623-1636.	7.3	48
41	Chemokine (Câ€C motif) receptor 2–positive monocytes aggravate the early phase of acetaminophenâ€induced acute liver injury. Hepatology, 2016, 64, 1667-1682.	7.3	271
42	Laminin-332 sustains chemoresistance and quiescence as part of the human hepatic cancer stem cell niche. Journal of Hepatology, 2016, 64, 609-617.	3.7	102
43	Prognostic relevance of molecular subtypes and master regulators in pancreatic ductal adenocarcinoma. BMC Cancer, 2016, 16, 632.	2.6	130
44	In Toxic Cirrhotic Rats, the FXR Agonist Obeticholic Acid Reduces Liver Fibrosis Indirectly via an Anti-Inflammatory Effect in Liver Sinusoidal Endothelial Cells and Kupffer Cells. Journal of Hepatology, 2016, 64, S141.	3.7	1
45	FXR agonist obeticholic acid reduces hepatic inflammation and fibrosis in a rat model of toxic cirrhosis. Scientific Reports, 2016, 6, 33453.	3.3	168
46	Histidineâ€rich glycoprotein promotes macrophage activation and inflammation in chronic liver disease. Hepatology, 2016, 63, 1310-1324.	7.3	77
47	Gene expression data from acetaminophen-induced toxicity in human hepatic in vitro systems and clinical liver samples. Data in Brief, 2016, 7, 1052-1057.	1.0	8
48	Toxicogenomics-based prediction of acetaminophen-induced liver injury using human hepatic cell systems. Toxicology Letters, 2016, 240, 50-59.	0.8	49
49	Microsatellite instable vs stable colon carcinomas: analysis of tumour heterogeneity, inflammation and angiogenesis. British Journal of Cancer, 2015, 113, 500-509.	6.4	112
50	Pathogenesis and Prognosis of Hepatocellular Carcinoma at the Cellular and Molecular Levels. Clinics in Liver Disease, 2015, 19, 261-276.	2.1	27
51	Pituitary tumors contain a side population with tumor stem cell-associated characteristics. Endocrine-Related Cancer, 2015, 22, 481-504.	3.1	70
52	Expression of FOXP1 and Colorectal Cancer Prognosis. Laboratory Medicine, 2015, 46, 299-311.	1.2	17
53	Tauroursodeoxycholic acid dampens oncogenic apoptosis induced by endoplasmic reticulum stress during hepatocarcinogen exposure. Oncotarget, 2015, 6, 28011-28025.	1.8	36
54	A novel hypoxia-associated subset of FN1highMITFlow melanoma cells: identification, characterization, and prognostic value. Modern Pathology, 2014, 27, 1088-1100.	5.5	20

OLIVIER GOVAERE

#	Article	IF	CITATIONS
55	Keratin 19: a key role player in the invasion of human hepatocellular carcinomas. Gut, 2014, 63, 674-685.	12.1	221
56	Chemokine receptor CCR6-dependent accumulation of γδT cells in injured liver restricts hepatic inflammation and fibrosis. Hepatology, 2014, 59, 630-642.	7.3	180
57	Human Skin-Derived Stem Cells as a Novel Cell Source for In Vitro Hepatotoxicity Screening of Pharmaceuticals. Stem Cells and Development, 2014, 23, 44-55.	2.1	48
58	A Possible Role for MicroRNA-141 Down-Regulation in Sunitinib Resistant Metastatic Clear Cell Renal Cell Carcinoma Through Induction of Epithelial-to-Mesenchymal Transition and Hypoxia Resistance. Journal of Urology, 2013, 189, 1930-1938.	0.4	61
59	Human Pancreatic Cancer Contains a Side Population Expressing Cancer Stem Cell-Associated and Prognostic Genes. PLoS ONE, 2013, 8, e73968.	2.5	66
60	The Human Melanoma Side Population Displays Molecular and Functional Characteristics of Enriched Chemoresistance and Tumorigenesis. PLoS ONE, 2013, 8, e76550.	2.5	43
61	Mesoderm-Derived Stem Cells: The Link Between the Transcriptome and Their Differentiation Potential. Stem Cells and Development, 2012, 21, 3309-3323.	2.1	47
62	Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nature Medicine, 2012, 18, 572-579.	30.7	624
63	Molecular markers associated with outcome and metastasis in human pancreatic cancer. Journal of Experimental and Clinical Cancer Research, 2012, 31, 68.	8.6	66
64	Histological diversity in cholangiocellular carcinoma reflects the different cholangiocyte phenotypes. Hepatology, 2012, 55, 1876-1888.	7.3	268
65	Gene expression changes in melanoma metastases in response to highâ€dose chemotherapy during isolated limb perfusion. Pigment Cell and Melanoma Research, 2012, 25, 454-465.	3.3	13
66	83 HISTOLOGICAL DIVERSITY IN CHOLANGIOCELLULAR CARCINOMA SUGGESTING DIFFERENT CELLS OF ORIGIN: INTRAHEPATIC PROGENITOR CELLS VERSUS HILAR MUCIN PRODUCING CELLS. Journal of Hepatology, 2011, 54, S37.	3.7	3