Jeff Sekelsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4513948/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Blm helicase facilitates rapid replication of repetitive DNA sequences in early <i>Drosophila</i> development. Genetics, 2022, 220, .	2.9	5
2	CSB-independent, XPC-dependent transcription-coupled repair in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	5
3	DNA polymerase theta suppresses mitotic crossing over. PLoS Genetics, 2021, 17, e1009267.	3.5	19
4	Meiotic Crossover Patterning. Frontiers in Cell and Developmental Biology, 2021, 9, 681123.	3.7	35
5	Meiotic and mitotic recombination: First in flies. , 2021, , 151-168.		1
6	A pathway for error-free non-homologous end joining of resected meiotic double-strand breaks. Nucleic Acids Research, 2021, 49, 879-890.	14.5	13
7	Mechanistic basis for microhomology identification and genome scarring by polymerase theta. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8476-8485.	7.1	96
8	The <i>Drosophila melanogaster</i> Ortholog of RFWD3 Functions Independently of RAD51 During DNA Repair. G3: Genes, Genomes, Genetics, 2020, 10, 999-1004.	1.8	2
9	Centromeric SMC1 promotes centromere clustering and stabilizes meiotic homolog pairing. PLoS Genetics, 2019, 15, e1008412.	3.5	11
10	Centromere-Proximal Meiotic Crossovers in <i>Drosophila melanogaster</i> Are Suppressed by Both Highly Repetitive Heterochromatin and Proximity to the Centromere. Genetics, 2019, 213, 113-125.	2.9	21
11	Meiotic MCM Proteins Promote and Inhibit Crossovers During Meiotic Recombination. Genetics, 2019, 212, 461-468.	2.9	9
12	Centromeric SMC1 promotes centromere clustering and stabilizes meiotic homolog pairing. , 2019, 15, e1008412.		0
13	Centromeric SMC1 promotes centromere clustering and stabilizes meiotic homolog pairing. , 2019, 15, e1008412.		0
14	Loss of <i>Drosophila</i> Mei-41/ATR Alters Meiotic Crossover Patterning. Genetics, 2018, 208, 579-588.	2.9	19
15	Local Inversion Heterozygosity Alters Recombination throughout the Genome. Current Biology, 2018, 28, 2984-2990.e3.	3.9	74
16	Annealing of Complementary DNA Sequences During Double-Strand Break Repair in <i>Drosophila</i> Is Mediated by the Ortholog of SMARCAL1. Genetics, 2017, 206, 467-480.	2.9	17
17	DNA Repair in <i>Drosophila</i> : Mutagens, Models, and Missing Genes. Genetics, 2017, 205, 471-490.	2.9	99
18	Human Cell Assays for Synthesis-Dependent Strand Annealing and Crossing over During Double-Strand Break Repair. G3: Genes, Genomes, Genetics, 2017, 7, 1191-1199.	1.8	8

JEFF SEKELSKY

#	Article	IF	CITATIONS
19	The absence of crossovers on chromosome 4 in Drosophila melanogaster: Imperfection or interesting exception?. Fly, 2017, 11, 253-259.	1.7	15
20	Substrate preference of Gen endonucleases highlights the importance of branched structures as DNA damage repair intermediates. Nucleic Acids Research, 2017, 45, 5333-5348.	14.5	21
21	Bloom Syndrome Helicase Promotes Meiotic Crossover Patterning and Homolog Disjunction. Current Biology, 2017, 27, 96-102.	3.9	46
22	Bloom syndrome helicase in meiosis: Pro rossover functions of an anti•rossover protein. BioEssays, 2017, 39, 1700073.	2.5	23
23	Meiotic and Mitotic Recombination. , 2016, , 139-154.		1
24	Biochemical Activities and Genetic Functions of the Drosophila melanogaster Fancm Helicase in DNA Repair. Genetics, 2016, 204, 531-541.	2.9	8
25	<i>Drosophila</i> FANCM Helicase Prevents Spontaneous Mitotic Crossovers Generated by the MUS81 and SLX1 Nucleases. Genetics, 2014, 198, 935-945.	2.9	22
26	Eliminating Both Canonical and Short-Patch Mismatch Repair in Drosophila melanogaster Suggests a New Meiotic Recombination Model. PLoS Genetics, 2014, 10, e1004583.	3.5	28
27	Sources and Structures of Mitotic Crossovers That Arise When BLM Helicase Is Absent in <i>Drosophila</i> . Genetics, 2014, 196, 107-118.	2.9	16
28	Targeted Gene Replacement in Drosophila Goes the Distance. Genetics, 2013, 193, 377-381.	2.9	2
29	Meiotic and Mitotic Recombination in Meiosis. Genetics, 2013, 194, 327-334.	2.9	83
30	The Development of a Monoclonal Antibody Recognizing the <i>Drosophila melanogaster</i> Phosphorylated Histone H2A Variant (γ-H2AV). G3: Genes, Genomes, Genetics, 2013, 3, 1539-1543.	1.8	67
31	An elegans Solution for Crossover Formation. PLoS Genetics, 2013, 9, e1003658.	3.5	11
32	Variation in Meiotic Recombination Frequencies Between Allelic Transgenes Inserted at Different Sites in the <i>Drosophila melanogaster</i> Genome. G3: Genes, Genomes, Genetics, 2013, 3, 1419-1427.	1.8	9
33	Evolution of an MCM Complex in Flies That Promotes Meiotic Crossovers by Blocking BLM Helicase. Science, 2012, 338, 1363-1365.	12.6	61
34	Transcription Initiation From Within <i>P</i> Elements Generates Hypomorphic Mutations in <i>Drosophila melanogaster</i> . Genetics, 2011, 188, 749-752.	2.9	13
35	Three Structure-Selective Endonucleases Are Essential in the Absence of BLM Helicase in Drosophila. PLoS Genetics, 2011, 7, e1002315.	3.5	43
36	Meiotic <i>versus</i> mitotic recombination: Two different routes for doubleâ€strand break repair. BioEssays, 2010, 32, 1058-1066.	2.5	116

JEFF SEKELSKY

#	Article	IF	CITATIONS
37	Mitotic Recombination: Why? When? How? Where?. PLoS Genetics, 2009, 5, e1000411.	3.5	68
38	DNA damage responses in Drosophila nbs mutants with reduced or altered NBS function. DNA Repair, 2009, 8, 803-812.	2.8	6
39	Drosophila MUS312 and the Vertebrate Ortholog BTBD12 Interact with DNA Structure-Specific Endonucleases in DNA Repair and Recombination. Molecular Cell, 2009, 35, 128-135.	9.7	159
40	Interstrand crosslink repair: can XPF-ERCC1 be let off the hook?. Trends in Genetics, 2008, 24, 70-76.	6.7	95
41	The 2008 Genetics Society of America Award for Excellence in Education. Genetics, 2008, 178, 1131-1133.	2.9	1
42	Reducing DNA Polymerase $\hat{l}\pm$ in the Absence of Drosophila ATR Leads to P53-Dependent Apoptosis and Developmental Defects. Genetics, 2007, 176, 1441-1451.	2.9	7
43	Synthetic Lethality of Drosophila in the Absence of the MUS81 Endonuclease and the DmBlm Helicase Is Associated With Elevated Apoptosis. Genetics, 2007, 176, 1993-2001.	2.9	49
44	Drosophila ATR in Double-Strand Break Repair. Genetics, 2007, 175, 1023-1033.	2.9	57
45	Multiple Functions of Drosophila BLM Helicase in Maintenance of Genome Stability. Genetics, 2007, 176, 1979-1992.	2.9	84
46	Meiotic Recombination in Drosophila Msh6 Mutants Yields Discontinuous Gene Conversion Tracts. Genetics, 2007, 176, 53-62.	2.9	29
47	Heteroduplex DNA in Meiotic Recombination in Drosophila mei-9 Mutants. Genetics, 2007, 176, 63-72.	2.9	30
48	REC, Drosophila MCM8, Drives Formation of Meiotic Crossovers. PLoS Genetics, 2005, 1, e40.	3.5	97
49	Drosophila ERCC1 Is Required for a Subset of MEI-9-Dependent Meiotic Crossovers. Genetics, 2005, 170, 1737-1745.	2.9	42
50	REC, Drosophila MCM8, Drives Formation of Meiotic Crossovers. PLoS Genetics, 2005, preprint, e40.	3.5	0
51	Formation of deletions during double-strand break repair in Drosophila DmBlm mutants occurs after strand invasion. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15694-15699.	7.1	83
52	Unique invasions and resolutions: DNA repair proteins in meiotic recombination in <i>Drosophila melanogaster</i> . Cytogenetic and Genome Research, 2004, 107, 172-179.	1.1	8
53	Evidence for Multiple Cycles of Strand Invasion During Repair of Double-Strand Gaps in Drosophila. Genetics, 2004, 167, 699-705.	2.9	97
54	Phenotypic Analysis of Separation-of-Function Alleles of MEI-41, Drosophila ATM/ATR. Genetics, 2003, 164, 589-601.	2.9	71

JEFF SEKELSKY

#	Article	IF	CITATIONS
55	Drosophila MUS312 Interacts with the Nucleotide Excision Repair Endonuclease MEI-9 to Generate Meiotic Crossovers. Molecular Cell, 2002, 10, 1503-1509.	9.7	102
56	From sequence to phenotype: reverse genetics in drosophila melanogaster. Nature Reviews Genetics, 2002, 3, 189-198.	16.3	121
57	DNA Repair in <i>Drosophila</i> . Journal of Cell Biology, 2000, 150, F31-F36.	5.2	118
58	Nucleotide excision repair endonuclease genes in Drosophila melanogaster. Mutation Research DNA Repair, 2000, 459, 219-228.	3.7	48
59	The mei-41 gene of D. melanogaster is a structural and functional homolog of the human ataxia telangiectasia gene. Cell, 1995, 82, 815-821.	28.9	294
60	Drawing a stripe in Drosophila imaginal disks: negative regulation of decapentaplegic and patched expression by engrailed Genetics, 1995, 139, 745-756.	2.9	125