
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4512614/publications.pdf Version: 2024-02-01

IFSUS M SANZ

#	Article	IF	CITATIONS
1	CLytA-DAAO Chimeric Enzyme Bound to Magnetic Nanoparticles. A New Therapeutical Approach for Cancer Patients?. International Journal of Molecular Sciences, 2021, 22, 1477.	4.1	10
2	From Residues to Added-Value Bacterial Biopolymers as Nanomaterials for Biomedical Applications. Nanomaterials, 2021, 11, 1492.	4.1	19
3	Inter-hairpin linker sequences determine the structure of the ββ-solenoid fold: a "bottom-up―study of pneumococcal LytA choline-binding module. International Journal of Biological Macromolecules, 2021, 190, 679-692.	7.5	1
4	DEAE-chitosan nanoparticles as a pneumococcus-biomimetic material for the development of antipneumococcal therapeutics. Carbohydrate Polymers, 2021, 273, 118605.	10.2	9
5	Choline-Functionalized Supramolecular Copolymers: Toward Antimicrobial Activity against Streptococcus pneumoniae. Biomacromolecules, 2021, , .	5.4	1
6	Turncoat Polypeptides: We Adapt to Our Environment. ChemBioChem, 2020, 21, 432-441.	2.6	7
7	Cell Death Mechanisms Induced by CLytA-DAAO Chimeric Enzyme in Human Tumor Cell Lines. International Journal of Molecular Sciences, 2020, 21, 8522.	4.1	8
8	Searching for Antipneumococcal Targets: Choline-Binding Modules as Phagocytosis Enhancers. ACS Infectious Diseases, 2020, 6, 954-974.	3.8	12
9	CLytA-DAAO, Free and Immobilized in Magnetic Nanoparticles, Induces Cell Death in Human Cancer Cells. Biomolecules, 2020, 10, 222.	4.0	19
10	Dissecting the Polyhydroxyalkanoate-Binding Domain of the PhaF Phasin: Rational Design of a Minimized Affinity Tag. Applied and Environmental Microbiology, 2020, 86, .	3.1	7
11	Role of leucine zipper-like motifs in the oligomerization of Pseudomonas putida phasins. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 362-370.	2.4	15
12	Widening the antimicrobial spectrum of esters of bicyclic amines: In vitro effect on gram-positive Streptococcus pneumoniae and gram-negative non-typeable Haemophilus influenzae biofilms. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 96-104.	2.4	5
13	Roles of Amphipathicity and Hydrophobicity in the Micelleâ€Driven Structural Switch of a 14â€mer Peptide Core from a Cholineâ€Binding Repeat. Chemistry - A European Journal, 2018, 24, 5825-5839.	3.3	7
14	Poly-3-Hydroxybutyrate Functionalization with BioF-Tagged Recombinant Proteins. Applied and Environmental Microbiology, 2018, 84, .	3.1	10
15	An enzymatic system for decolorization of wastewater dyes using immobilized CueO laccaseâ€like multicopper oxidase on polyâ€3â€hydroxybutyrate. Microbial Biotechnology, 2018, 11, 881-892.	4.2	30
16	Polyhydroxyalkanoateâ€associated phasins as phylogenetically heterogeneous, multipurpose proteins. Microbial Biotechnology, 2017, 10, 1323-1337.	4.2	46
17	Microbes go nano. Microbial Biotechnology, 2017, 10, 17-18.	4.2	2
18	Choline Binding Proteins from Streptococcus pneumoniae: A Dual Role as Enzybiotics and Targets for the Design of New Antimicrobials. Antibiotics, 2016, 5, 21.	3.7	66

#	Article	IF	CITATIONS
19	Micelleâ€Triggered βâ€Hairpin to αâ€Helix Transition in a 14â€Residue Peptide from a Cholineâ€Binding Repeat Pneumococcal Autolysin LytA. Chemistry - A European Journal, 2015, 21, 8076-8089.	of the	16
20	Aromatic Esters of Bicyclic Amines as Antimicrobials against <i>Streptococcus pneumoniae</i> . Angewandte Chemie - International Edition, 2015, 54, 13673-13677.	13.8	7
21	The loss of function of <scp>PhaC</scp> 1 is a survival mechanism that counteracts the stress caused by the overproduction of polyâ€3â€hydroxyalkanoates in <scp><i>P</i></scp> <i>seudomonas putida</i> l* <scp><i>fadBA</i></scp> . Environmental Microbiology, 2015, 17, 3182-3194.	3.8	4
22	Specific and Reversible Immobilization of Proteins Tagged to the Affinity Polypeptide C-LytA on Functionalized Graphite Electrodes. PLoS ONE, 2014, 9, e87995.	2.5	19
23	Crystal structures of CbpF complexed with atropine and ipratropium reveal clues for the design of novel antimicrobials against Streptococcus pneumoniae. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 129-135.	2.4	10
24	Thermal unfolding and refolding of lysozyme in deep eutectic solvents and their aqueous dilutions. Physical Chemistry Chemical Physics, 2013, 15, 11248.	2.8	108
25	Multivalent Choline Dendrimers Increase Phagocytosis ofStreptococcus pneumoniaeR6 by Microglial Cells. Chemotherapy, 2013, 59, 138-142.	1.6	17
26	A New Family of Intrinsically Disordered Proteins: Structural Characterization of the Major Phasin PhaF from Pseudomonas putida KT2440. PLoS ONE, 2013, 8, e56904.	2.5	51
27	Choline dendrimers as generic scaffolds for the non-covalent synthesis of multivalent protein assemblies. Chemical Communications, 2011, 47, 5997.	4.1	10
28	Nucleoidâ€associated PhaF phasin drives intracellular location and segregation of polyhydroxyalkanoate granules in <i>Pseudomonas putida</i> KT2442. Molecular Microbiology, 2011, 79, 402-418.	2.5	102
29	Recognition of peptidoglycan and β-lactam antibiotics by the extracellular domain of the Ser/Thr protein kinase StkP from <i>Streptococcus pneumoniae</i> . FEBS Letters, 2011, 585, 357-363.	2.8	72
30	Crystallization and preliminary X-ray diffraction studies of the transcriptional repressor PaaX, the main regulator of the phenylacetic acid degradation pathway in <i>Escherichia coli</i> W. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 1278-1280.	0.7	5
31	Structural autonomy of a β-hairpin peptide derived from the pneumococcal choline-binding protein LytA. Protein Engineering, Design and Selection, 2011, 24, 113-122.	2.1	10
32	The PhaD regulator controls the simultaneous expression of the <i>pha</i> genes involved in polyhydroxyalkanoate metabolism and turnover in <i>Pseudomonas putida</i> KT2442. Environmental Microbiology, 2010, 12, 1591-1603.	3.8	59
33	Characterization of Snail nuclear import pathways as representatives of C2H2 zinc finger transcription factors. Journal of Cell Science, 2009, 122, 1452-1460.	2.0	54
34	Multivalent Choline Dendrimers as Potent Inhibitors of Pneumococcal Cellâ€Wall Hydrolysis. Angewandte Chemie - International Edition, 2009, 48, 948-951.	13.8	25
35	Affinity partitioning of proteins tagged with choline-binding modules in aqueous two-phase systems. Journal of Chromatography A, 2008, 1208, 189-196.	3.7	31
36	Comparative Analysis of the Physiological and Structural Properties of a Medium Chain Length Polyhydroxyalkanoate Depolymerase from <i>Pseudomonas putida</i> KT2442. Engineering in Life Sciences, 2008, 8, 260-267.	3.6	17

#	Article	IF	CITATIONS
37	Polyâ€3â€hydroxyalkanoate synthases from <i>Pseudomonas putida</i> U: substrate specificity and ultrastructural studies. Microbial Biotechnology, 2008, 1, 170-176.	4.2	15
38	Rational stabilization of the C-LytA affinity tag by protein engineering. Protein Engineering, Design and Selection, 2008, 21, 709-720.	2.1	5
39	Biochemical Evidence That phaZ Gene Encodes a Specific Intracellular Medium Chain Length Polyhydroxyalkanoate Depolymerase in Pseudomonas putida KT2442. Journal of Biological Chemistry, 2007, 282, 4951-4962.	3.4	77
40	Novel Approaches To Fight Streptococcus pneumoniae. Recent Patents on Anti-infective Drug Discovery, 2007, 2, 188-196.	0.8	17
41	Extensive unfolding of the C-LytA choline-binding module by submicellar concentrations of sodium dodecyl sulphate. FEBS Letters, 2007, 581, 375-381.	2.8	10
42	Inhibition of pneumococcal cholineâ€binding proteins and cell growth by esters of bicyclic amines. FEBS Journal, 2007, 274, 364-376.	4.7	31
43	Accumulation of partly folded states in the equilibrium unfolding of the pneumococcal choline-binding module C-LytA. Biochemical Journal, 2005, 387, 479-488.	3.7	17
44	Molecular determinants of the hpa regulatory system of Escherichia coli: the HpaR repressor. Nucleic Acids Research, 2003, 31, 6598-6609.	14.5	62
45	Modulation of pPS10 Host Range by Plasmid-Encoded RepA Initiator Protein. Journal of Bacteriology, 2003, 185, 1367-1375.	2.2	37
46	Folding of Dimeric Methionine Adenosyltransferase III. Journal of Biological Chemistry, 2002, 277, 12061-12066.	3.4	15
47	Hints of Nonhierarchical Folding of Acidic Fibroblast Growth Factorâ€. Biochemistry, 2002, 41, 1923-1933.	2.5	10
48	Modulation of pPS10 host range by DnaA. Molecular Microbiology, 2002, 46, 223-234.	2.5	23
49	1H NMR Structural Characterization of a Nonmitogenic, Vasodilatory, Ischemia-Protector and Neuromodulatory Acidic Fibroblast Growth Factor. Biochemistry, 2000, 39, 4982-4993.	2.5	41
50	Structural Differences betweenSaccharomyces cerevisiaeRibosomal Stalk Proteins P1 and P2 Support Their Functional Diversityâ€. Biochemistry, 2000, 39, 8935-8943.	2.5	22
51	Structural and functional study of a conserved region in the uncoupling protein UCP1: the three matrix loops are involved in the control of transport 1 1Edited by R. Huber. Journal of Molecular Biology, 1999, 292, 137-149.	4.2	31
52	Three-Dimensional Solution Structure and Stability of Phage 434 Cro Proteinâ€,‡. Biochemistry, 1997, 36, 6424-6436.	2.5	20
53	The Exchangeable Yeast Ribosomal Acidic Protein YP2β Shows Characteristics of a Partly Folded State under Physiological Conditions. Biochemistry, 1997, 36, 9625-9635.	2.5	46
54	A partly Folded State of Acidic Fibroblast Growth Factor at Low Ph. FEBS Journal, 1997, 246, 328-335.	0.2	26

#	Article	IF	CITATIONS
55	Construction of a Multifunctional Pneumococcal Murein Hydrolase by Module Assembly. FEBS Journal, 1996, 235, 601-605.	0.2	9
56	Measurement of barnase refolding rate constants under denaturing conditions. FEBS Letters, 1994, 344, 216-220.	2.8	8
57	The A-State of Barnase. Biochemistry, 1994, 33, 11189-11199.	2.5	32
58	Rationally designing the accumulation of a folding intermediate of barnase by protein engineering. Biochemistry, 1993, 32, 13584-13592.	2.5	51
59	Searching for the Evolutionary Design of the Pneumococcal Cell Wall Lytic Enzymes. , 1993, , 253-259.		0
60	Role of Asp-9 and Glu-36 in the active site of the pneumococcal CPL1 lysozyme; an evolutionary perspective of lysozyme mechanism. Biochemistry, 1992, 31, 8495-8499.	2.5	20
61	Studies on the structure and function of the N-terminal domain of the pneumococcal murein hydrolases. Molecular Microbiology, 1992, 6, 921-931.	2.5	61
62	Immobilization and single-step purification of fusion proteins using DEAE-cellulose. FEBS Journal, 1992, 203, 153-159.	0.2	86
63	Structural studies of the lysozyme coded by the pneumococcal phage Cp-1. Conformational changes induced by choline. FEBS Journal, 1990, 187, 409-416.	0.2	31
64	Cloning and expression of gene fragments encoding the choline-binding domain of pneumococcal murein hydrolases. Gene, 1990, 89, 69-75.	2.2	115
65	Structural requirements of choline derivatives for †conversion' of pneumococcal amidase A new single-step procedure for purification of this autolysin. FEBS Letters, 1988, 232, 308-312	2.8	87