
Joel Brito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4512152/publications.pdf Version: 2024-02-01

LOFI RRITO

#	Article	IF	CITATIONS
1	The Amazon Tall Tower Observatory (ATTO): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols. Atmospheric Chemistry and Physics, 2015, 15, 10723-10776.	4.9	218
2	Atmospheric aerosols in Amazonia and land use change: from natural biogenic to biomass burning conditions. Faraday Discussions, 2013, 165, 203.	3.2	207
3	Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements. Atmospheric Chemistry and Physics, 2015, 15, 11807-11833.	4.9	185
4	Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network. Atmospheric Chemistry and Physics, 2016, 16, 11915-11935.	4.9	185
5	Urban pollution greatly enhances formation of natural aerosols over the Amazon rainforest. Nature Communications, 2019, 10, 1046.	12.8	131
6	The Green Ocean Amazon Experiment (GoAmazon2014/5) Observes Pollution Affecting Gases, Aerosols, Clouds, and Rainfall over the Rain Forest. Bulletin of the American Meteorological Society, 2017, 98, 981-997.	3.3	128
7	Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall. Nature, 2016, 539, 416-419.	27.8	112
8	Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories. Atmospheric Chemistry and Physics, 2018, 18, 2853-2881.	4.9	108
9	Long-term observations of cloud condensation nuclei in the Amazon rain forest – Part 1: Aerosol size distribution, hygroscopicity, and new model parametrizations for CCN prediction. Atmospheric Chemistry and Physics, 2016, 16, 15709-15740.	4.9	105
10	Ground-based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA) field experiment. Atmospheric Chemistry and Physics, 2014, 14, 12069-12083.	4.9	103
11	Isoprene photochemistry over the Amazon rainforest. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6125-6130.	7.1	85
12	The DACCIWA Project: Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa. Bulletin of the American Meteorological Society, 2015, 96, 1451-1460.	3.3	84
13	Biomass burning in the Amazon region: Aerosol source apportionment and associated health risk assessment. Atmospheric Environment, 2015, 120, 277-285.	4.1	84
14	Diel and seasonal changes of biogenic volatile organic compounds within and above an Amazonian rainforest. Atmospheric Chemistry and Physics, 2015, 15, 3359-3378.	4.9	83
15	Physical–chemical characterisation of the particulate matter inside two road tunnels in the São Paulo Metropolitan Area. Atmospheric Chemistry and Physics, 2013, 13, 12199-12213.	4.9	81
16	CCN activity and organic hygroscopicity of aerosols downwind of an urban region in central Amazonia: seasonal and diel variations and impact of anthropogenic emissions. Atmospheric Chemistry and Physics, 2017, 17, 11779-11801.	4.9	71
17	Long-term observations of cloud condensation nuclei over the Amazon rain forest – Part 2: Variability and characteristics of biomass burning, long-range transport, and pristine rain forest aerosols. Atmospheric Chemistry and Physics, 2018, 18, 10289-10331.	4.9	64
18	Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia. Atmospheric Chemistry and Physics, 2018, 18, 467-493.	4.9	63

JOEL BRITO

#	Article	IF	CITATIONS
19	The Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa Field Campaign: Overview and Research Highlights. Bulletin of the American Meteorological Society, 2018, 99, 83-104.	3.3	62
20	Biomass burning aerosol over the Amazon: analysis of aircraft, surface and satellite observations using a global aerosol model. Atmospheric Chemistry and Physics, 2019, 19, 9125-9152.	4.9	60
21	Strong sesquiterpene emissions from Amazonian soils. Nature Communications, 2018, 9, 2226.	12.8	55
22	Black and brown carbon over central Amazonia: long-term aerosol measurements at the ATTO site. Atmospheric Chemistry and Physics, 2018, 18, 12817-12843.	4.9	54
23	Long-term study on coarse mode aerosols in the Amazon rain forest with the frequent intrusion of Saharan dust plumes. Atmospheric Chemistry and Physics, 2018, 18, 10055-10088.	4.9	52
24	Measured and modelled cloud condensation nuclei (CCN) concentration in São Paulo, Brazil: the importance of aerosol size-resolved chemical composition on CCN concentration prediction. Atmospheric Chemistry and Physics, 2014, 14, 7559-7572.	4.9	51
25	Vehicular Emission Ratios of VOCs in a Megacity Impacted by Extensive Ethanol Use: Results of Ambient Measurements in São Paulo, Brazil. Environmental Science & Technology, 2015, 49, 11381-11387.	10.0	48
26	Airborne observations of IEPOX-derived isoprene SOA in the Amazon during SAMBBA. Atmospheric Chemistry and Physics, 2014, 14, 11393-11407.	4.9	46
27	Rupturing of Biological Spores As a Source of Secondary Particles in Amazonia. Environmental Science & Technology, 2016, 50, 12179-12186.	10.0	46
28	Influence of urban pollution on the production of organic particulate matter from isoprene epoxydiols in central Amazonia. Atmospheric Chemistry and Physics, 2017, 17, 6611-6629.	4.9	45
29	Comparison of different Aethalometer correction schemes and a reference multi-wavelength absorption technique for ambient aerosol data. Atmospheric Measurement Techniques, 2017, 10, 2837-2850.	3.1	44
30	Modeling investigation of light-absorbing aerosols in the Amazon Basin during the wet season. Atmospheric Chemistry and Physics, 2016, 16, 14775-14794.	4.9	42
31	Land cover and its transformation in the backward trajectory footprint region of the Amazon Tall Tower Observatory. Atmospheric Chemistry and Physics, 2019, 19, 8425-8470.	4.9	41
32	Influx of African biomass burning aerosol during the Amazonian dry season through layered transatlantic transport of black carbon-rich smoke. Atmospheric Chemistry and Physics, 2020, 20, 4757-4785.	4.9	40
33	Biogenic cloud nuclei in the central Amazon during the transition from wet to dry season. Atmospheric Chemistry and Physics, 2016, 16, 9727-9743.	4.9	37
34	Atmospheric mixing ratios of methyl ethyl ketone (2-butanone) in tropical, boreal, temperate and marine environments. Atmospheric Chemistry and Physics, 2016, 16, 10965-10984.	4.9	37
35	Contributions of biomass-burning, urban, and biogenic emissions to the concentrations and light-absorbing properties of particulate matter in central Amazonia during the dry season. Atmospheric Chemistry and Physics, 2019, 19, 7973-8001.	4.9	36
36	Reduced ultrafine particle levels in São Paulo's atmosphere during shifts from gasoline to ethanol use. Nature Communications, 2017, 8, 77.	12.8	31

Joel Brito

#	Article	IF	CITATIONS
37	Fungal spores as a source of sodium salt particles in the Amazon basin. Nature Communications, 2018, 9, 4793.	12.8	31
38	Large air quality and human health impacts due to Amazon forest and vegetation fires. Environmental Research Communications, 2020, 2, 095001.	2.3	31
39	Elemental Mixing State of Aerosol Particles Collected in Central Amazonia during GoAmazon2014/15. Atmosphere, 2017, 8, 173.	2.3	30
40	Urban influence on the concentration and composition of submicron particulate matter in central Amazonia. Atmospheric Chemistry and Physics, 2018, 18, 12185-12206.	4.9	30
41	Remote biomass burning dominates southern West African air pollution during the monsoon. Atmospheric Chemistry and Physics, 2019, 19, 15217-15234.	4.9	29
42	Overview of aerosol optical properties over southern West Africa from DACCIWA aircraft measurements. Atmospheric Chemistry and Physics, 2020, 20, 4735-4756.	4.9	27
43	Assessing the role of anthropogenic and biogenic sources on PM ₁ over southern West Africa using aircraft measurements. Atmospheric Chemistry and Physics, 2018, 18, 757-772.	4.9	26
44	Multi-year statistical and modeling analysis of submicrometer aerosol number size distributions at a rain forest site in Amazonia. Atmospheric Chemistry and Physics, 2018, 18, 10255-10274.	4.9	26
45	Ground-based observation of clusters and nucleation-mode particles in the Amazon. Atmospheric Chemistry and Physics, 2018, 18, 13245-13264.	4.9	26
46	Mixing states of Amazon basin aerosol particles transported over long distances using transmission electron microscopy. Atmospheric Chemistry and Physics, 2020, 20, 11923-11939.	4.9	25
47	Diurnal cycle of coastal anthropogenic pollutant transport over southern West Africa during the DACCIWA campaign. Atmospheric Chemistry and Physics, 2019, 19, 473-497.	4.9	24
48	Disentangling vehicular emission impact on urban air pollution using ethanol as a tracer. Scientific Reports, 2018, 8, 10679.	3.3	23
49	Aerosol composition and the contribution of SOA formation over Mediterranean forests. Atmospheric Chemistry and Physics, 2018, 18, 7041-7056.	4.9	22
50	Intercomparison and characterization of 23 Aethalometers under laboratory and ambient air conditions: procedures and unit-to-unit variabilities. Atmospheric Measurement Techniques, 2021, 14, 3195-3216.	3.1	22
51	Aerosol distribution in the northern Gulf of Guinea: local anthropogenic sources, long-range transport, and the role of coastal shallow circulations. Atmospheric Chemistry and Physics, 2018, 18, 12363-12389.	4.9	21
52	The radiative impact of out-of-cloud aerosol hygroscopic growth during the summer monsoon in southern West Africa. Atmospheric Chemistry and Physics, 2019, 19, 1505-1520.	4.9	20
53	Unexpected Biomass Burning Aerosol Absorption Enhancement Explained by Black Carbon Mixing State. Geophysical Research Letters, 2020, 47, e2020GL089055.	4.0	20
54	Aerosol influences on low-level clouds in the West African monsoon. Atmospheric Chemistry and Physics, 2019, 19, 8503-8522.	4.9	19

Joel Brito

#	Article	IF	CITATIONS
55	The vertical distribution of biomass burning pollution over tropical South America from aircraft in situ measurements during SAMBBA. Atmospheric Chemistry and Physics, 2019, 19, 5771-5790.	4.9	19
56	Evidence of New Particle Formation Within Etna and Stromboli Volcanic Plumes and Its Parameterization From Airborne In Situ Measurements. Journal of Geophysical Research D: Atmospheres, 2019, 124, 5650-5668.	3.3	18
57	Ambient concentrations and insights on organic and elemental carbon dynamics in São Paulo, Brazil. Atmospheric Environment, 2016, 144, 226-233.	4.1	17
58	Observations of Manaus urban plume evolution and interaction with biogenic emissions in GoAmazon 2014/5. Atmospheric Environment, 2018, 191, 513-524.	4.1	17
59	African volcanic emissions influencing atmospheric aerosols over the Amazon rain forest. Atmospheric Chemistry and Physics, 2018, 18, 10391-10405.	4.9	16
60	Occurrence and growth of sub-50 nm aerosol particles in the Amazonian boundary layer. Atmospheric Chemistry and Physics, 2022, 22, 3469-3492.	4.9	16
61	An unheated permeation device for calibrating atmospheric VOC measurements. Atmospheric Measurement Techniques, 2011, 4, 2143-2152.	3.1	13
62	Biomass burning emission disturbances of isoprene oxidation in a tropical forest. Atmospheric Chemistry and Physics, 2018, 18, 12715-12734.	4.9	12
63	Investigation of PM10, PM2.5, PM1 in an unoccupied airflow-controlled room: How reliable to neglect resuspension and assume unreactive particles?. Building and Environment, 2020, 186, 107357.	6.9	10
64	Seasonality of isoprene emissions and oxidation products above the remote Amazon. Environmental Science Atmospheres, 2022, 2, 230-240.	2.4	4
65	Using Real Time Measurements to Derive the Indoor and Outdoor Contributions of Submicron Particulate Species and Trace Gases. Toxics, 2022, 10, 161.	3.7	4
66	Acetone–CO enhancement ratios in the upper troposphere based on 7 years of CARIBIC data: new insights and estimates of regional acetone fluxes. Atmospheric Chemistry and Physics, 2017, 17, 1985-2008.	4.9	3
67	Sensitivity of low-level clouds and precipitation to anthropogenic aerosol emission in southern West Africa: a DACCIWA case study. Atmospheric Chemistry and Physics, 2022, 22, 3251-3273.	4.9	3