Johannes Gescher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/451165/publications.pdf

Version: 2024-02-01

57	2,558	257450	206112
papers	citations	h-index	g-index
59	59	59	2868
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Micrarchaeon Isolate Is Covered by a Proteinaceous S-Layer. Applied and Environmental Microbiology, 2022, 88, AEM0155321.	3.1	4
2	Nanowired electrodes as outer membrane cytochrome-independent electronicÂconduit in Shewanella oneidensis. IScience, 2022, 25, 103853.	4.1	2
3	Enhanced production of propionic acid through acidic hydrolysis by choice of inoculum. Journal of Chemical Technology and Biotechnology, 2021, 96, 207-216.	3. 2	6
4	Assessing and modeling biocatalysis in field denitrification beds reveals key influencing factors for future constructions. Water Research, 2021, 188, 116467.	11.3	11
5	Propionic acid production from food waste in batch reactors: Effect of pH, types of inoculum, and thermal pre-treatment. Bioresource Technology, 2021, 319, 124166.	9.6	24
6	Extracellular riboflavin induces anaerobic biofilm formation in Shewanella oneidensis. Biotechnology for Biofuels, 2021, 14, 130.	6.2	25
7	Production of acetoin from renewable resources under heterotrophic and mixotrophic conditions. Bioresource Technology, 2021, 329, 124866.	9.6	8
8	Perspectives on Potential Applications of Nanometal Derivatives in Gaseous Bioenergy Pathways: Mechanisms, Life Cycle, and Toxicity. ACS Sustainable Chemistry and Engineering, 2021, 9, 9563-9589.	6.7	26
9	Biological biogas upgrading in a membrane biofilm reactor with and without organic carbon source. Bioresource Technology, 2021, 335, 125287.	9.6	10
10	Developing Rhodobacter sphaeroides for cathodic biopolymer production. Bioresource Technology, 2021, 336, 125340.	9.6	4
11	Improving the Cathodic Biofilm Growth Capabilities of Kyrpidia spormannii EA-1 by Undirected Mutagenesis. Microorganisms, 2021, 9, 77.	3.6	9
12	Biochemical Characterization of Recombinant Isocitrate Dehydrogenase and Its Putative Role in the Physiology of an Acidophilic Micrarchaeon. Microorganisms, 2021, 9, 2318.	3.6	1
13	Accelerated Electro-Fermentation of Acetoin in Escherichia coli by Identifying Physiological Limitations of the Electron Transfer Kinetics and the Central Metabolism. Microorganisms, 2020, 8, 1843.	3.6	4
14	Exploring the Effects of bolA in Biofilm Formation and Current Generation by Shewanella oneidensis MR-1. Frontiers in Microbiology, 2020, 11, 815.	3 . 5	15
15	Cultivation of Exoelectrogenic Bacteria in Conductive DNA Nanocomposite Hydrogels Yields a Programmable Biohybrid Materials System. ACS Applied Materials & amp; Interfaces, 2020, 12, 14806-14813.	8.0	26
16	Genetic engineering for enhanced productivity in bioelectrochemical systems. Advances in Applied Microbiology, 2020, 111, 1-31.	2.4	7
17	From an extremophilic community to an electroautotrophic production strain: identifying a novel <i>Knallgas</i> bacterium as cathodic biofilm biocatalyst. ISME Journal, 2020, 14, 1125-1140.	9.8	28
18	The alternative sigma factor $if X$ mediates competence shut-off at the cell pole in Streptococcus pneumoniae. ELife, 2020, 9, .	6.0	9

#	Article	IF	Citations
19	Efficient biochemical production of acetoin from carbon dioxide using Cupriavidus necator H16. Biotechnology for Biofuels, 2019, 12, 163.	6.2	37
20	Addition of Riboflavin-Coupled Magnetic Beads Increases Current Production in Bioelectrochemical Systems via the Increased Formation of Anode-Biofilms. Frontiers in Microbiology, 2019, 10, 126.	3.5	15
21	Evaluation of productive biofilms for continuous lactic acid production. Biotechnology and Bioengineering, 2019, 116, 2687-2697.	3.3	15
22	Biofilm systems as tools in biotechnological production. Applied Microbiology and Biotechnology, 2019, 103, 5095-5103.	3.6	24
23	Improvement of the electron transfer rate in Shewanella oneidensis MR-1 using a tailored periplasmic protein composition. Bioelectrochemistry, 2019, 129, 18-25.	4.6	31
24	NO $<$ sub $>3sub><sup>â^\circsup> removal efficiency in field denitrification beds: key controlling factors and main implications. Environmental Microbiology Reports, 2019, 11, 316-329.$	2.4	23
25	Efficient Bioelectrochemical Conversion of Industrial Wastewater by Specific Strain Isolation and Community Adaptation. Frontiers in Bioengineering and Biotechnology, 2019, 7, 23.	4.1	4
26	Soluble versions of outer membrane cytochromes function as exporters for heterologously produced cargo proteins. Microbial Cell Factories, 2019, 18, 216.	4.0	2
27	Electron transfer process in microbial electrochemical technologies: The role of cell-surface exposed conductive proteins. Bioresource Technology, 2018, 255, 308-317.	9.6	85
28	Effects of wastewater constituents and operational conditions on the composition and dynamics of anodic microbial communities in bioelectrochemical systems. Bioresource Technology, 2018, 258, 376-389.	9.6	43
29	Chromate Resistance Mechanisms in Leucobacter chromiiresistens. Applied and Environmental Microbiology, 2018, 84, .	3.1	29
30	Complete Genome Sequence of $\langle i \rangle$ Kyrpidia $\langle i \rangle$ sp. Strain EA-1, a Thermophilic Knallgas Bacterium, Isolated from the Azores. Genome Announcements, 2018, 6, .	0.8	6
31	Development of a production chain from vegetable biowaste to platform chemicals. Microbial Cell Factories, 2018, 17, 90.	4.0	12
32	Influence of the Potential Carbon Sources for Field Denitrification Beds on Their Microbial Diversity and the Fate of Carbon and Nitrate. Frontiers in Microbiology, 2018, 9, 1313.	3.5	24
33	Extracellular reduction of solid electron acceptors by <i>Shewanella oneidensis</i> Microbiology, 2018, 109, 571-583.	2.5	83
34	Fineâ€tuning cellular levels of DprA ensures transformant fitness in the human pathogen <i>Streptococcus pneumoniae</i> . Molecular Microbiology, 2018, 109, 663-675.	2.5	20
35	Kyrpidia spormannii sp. nov., a thermophilic, hydrogen-oxidizing, facultative autotroph, isolated from hydrothermal systems at São Miguel Island, and emended description of the genus Kyrpidia. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 3735-3740.	1.7	28
36	Acetoin production via unbalanced fermentation in <i>Shewanella oneidensis</i> Bioengineering, 2017, 114, 1283-1289.	3.3	66

#	Article	IF	Citations
37	Resilience, Dynamics, and Interactions within a Model Multispecies Exoelectrogenic-Biofilm Community. Applied and Environmental Microbiology, 2017, 83, .	3.1	37
38	Electrode-assisted acetoin production in a metabolically engineered Escherichia coli strain. Biotechnology for Biofuels, 2017, 10, 65.	6.2	57
39	Extracellular Electron Transfer and Biosensors. Advances in Biochemical Engineering/Biotechnology, 2017, 167, 15-38.	1.1	18
40	Characterisation of a stable laboratory co-culture of acidophilic nanoorganisms. Scientific Reports, 2017, 7, 3289.	3.3	57
41	<i>Metallibacterium scheffleri</i> : Genomic data reveal a versatile metabolism. FEMS Microbiology Ecology, 2017, 93, fix011.	2.7	9
42	Investigation on the anaerobic propionate degradation by <i>Escherichia coli</i> K12. Molecular Microbiology, 2017, 103, 55-66.	2.5	20
43	Investigation of different nitrogen reduction routes and their key microbial players in wood chip-driven denitrification beds. Scientific Reports, 2017, 7, 17028.	3.3	33
44	Fineâ€ŧuning of choline metabolism is important for pneumococcal colonization. Molecular Microbiology, 2016, 100, 972-988.	2.5	44
45	The performance of microbial anodes in municipal wastewater: Pre-grown multispecies biofilm vs. natural inocula. Bioresource Technology, 2016, 221, 165-171.	9.6	12
46	Genomic Barcode-Based Analysis of Exoelectrogens in Wastewater Biofilms Grown on Anode Surfaces. Journal of Microbiology and Biotechnology, 2016, 26, 511-520.	2.1	11
47	A dynamic periplasmic electron transfer network enables respiratory flexibility beyond a thermodynamic regulatory regime. ISME Journal, 2015, 9, 1802-1811.	9.8	134
48	Unbalanced fermentation of glycerol in Escherichia coli via heterologous production of an electron transport chain and electrode interaction in microbial electrochemical cells. Bioresource Technology, 2015, 186, 89-96.	9.6	96
49	Bacterial transformation: distribution, shared mechanisms and divergent control. Nature Reviews Microbiology, 2014, 12, 181-196.	28.6	568
50	Characterization of microbial current production as a function of microbe–electrode-interaction. Bioresource Technology, 2014, 157, 284-292.	9.6	68
51	Using planktonic microorganisms to supply the unpurified multi-copper oxidases laccase and copper efflux oxidases at a biofuel cell cathode. Bioresource Technology, 2014, 158, 231-238.	9.6	10
52	Metabolic Engineering of Escherichia coli for Production of Mixed-Acid Fermentation End Products. Frontiers in Bioengineering and Biotechnology, 2014, 2, 16.	4.1	79
53	Systematic screening of carbon-based anode materials for microbial fuel cells with Shewanella oneidensis MR-1. Bioresource Technology, 2013, 146, 386-392.	9.6	63
54	Dissimilatory Reduction of Extracellular Electron Acceptors in Anaerobic Respiration. Applied and Environmental Microbiology, 2012, 78, 913-921.	3.1	232

#	Article	IF	CITATIONS
55	Investigation of the Electron Transport Chain to and the Catalytic Activity of the Diheme Cytochrome <i>c</i> Peroxidase CcpA of Shewanella oneidensis. Applied and Environmental Microbiology, 2011, 77, 6172-6180.	3.1	60
56	Involvement of the <i>Shewanella oneidensis</i> Decaheme Cytochrome MtrA in the Periplasmic Stability of the \hat{l}^2 -Barrel Protein MtrB. Applied and Environmental Microbiology, 2011, 77, 1520-1523.	3.1	34
57	Periplasmic Electron Transfer via the <i>c</i> -Type Cytochromes MtrA and FccA of <i>Shewanella oneidensis</i> MR-1. Applied and Environmental Microbiology, 2009, 75, 7789-7796.	3.1	148