
Charles De Smet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4511407/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of an Antigen That Is Recognized on a Melanoma Showing Partial HLA Loss by CTL Expressing an NK Inhibitory Receptor. Immunity, 1997, 6, 199-208.	14.3	685
2	DNA Methylation Is the Primary Silencing Mechanism for a Set of Germ Line- and Tumor-Specific Genes with a CpG-Rich Promoter. Molecular and Cellular Biology, 1999, 19, 7327-7335.	2.3	555
3	Structure, chromosomal localization, and expression of 12 genes of the MAGE family. Immunogenetics, 1994, 40, 360-369.	2.4	554
4	Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO Journal, 2005, 24, 336-346.	7.8	375
5	A peptide encoded by human gene MAGE-3 and presented by HLA-A2 induces cytolytic T lymphocytes that recognize tumor cells expressing MAGE-3. European Journal of Immunology, 1994, 24, 3038-3043.	2.9	339
6	LAGE-1, a new gene with tumor specificity. International Journal of Cancer, 1998, 76, 903-908.	5.1	217
7	Promoter-Dependent Mechanism Leading to Selective Hypomethylation within the 5′ Region of Gene <i>MAGE-A1</i> in Tumor Cells. Molecular and Cellular Biology, 2004, 24, 4781-4790.	2.3	177
8	Oncogenic roles of DNA hypomethylation through the activation of cancer-germline genes. Cancer Letters, 2017, 396, 130-137.	7.2	158
9	Two Members of the HumanMAGEBGene Family Located in Xp21.3 Are Expressed in Tumors of Various Histological Origins. Genomics, 1997, 46, 397-408.	2.9	119
10	Monoclonal Anti-MAGE-3 CTL Responses in Melanoma Patients Displaying Tumor Regression after Vaccination with a Recombinant Canarypox Virus. Journal of Immunology, 2003, 171, 4898-4904.	0.8	97
11	MAGE-A1 interacts with adaptor SKIP and the deacetylase HDAC1 to repress transcription. Nucleic Acids Research, 2004, 32, 4340-4350.	14.5	89
12	Involvement of two Ets binding sites in the transcriptional activation of the MAGE1 gene. Immunogenetics, 1995, 42, 282-290.	2.4	84
13	Transient Down-regulation of DNMT1 Methyltransferase Leads to Activation and Stable Hypomethylation of MAGE-A1 in Melanoma Cells. Journal of Biological Chemistry, 2006, 281, 10118-10126.	3.4	73
14	Five new human cancer-germline genes identified among 12 genes expressed in spermatogonia. International Journal of Cancer, 2003, 105, 371-376.	5.1	68
15	DNA hypomethylation in cancer: Epigenetic scars of a neoplastic journey. Epigenetics, 2010, 5, 206-213.	2.7	68
16	Comparison of stable human Treg and Th clones by transcriptional profiling. European Journal of Immunology, 2009, 39, 869-882.	2.9	63
17	Epigenetic Regulations of Immediate Early Genes Expression Involved in Memory Formation by the Amyloid Precursor Protein of Alzheimer Disease. PLoS ONE, 2014, 9, e99467.	2.5	60
18	Expression of <i>BORIS</i> in melanoma: Lack of association with <i>MAGEâ€A1</i> activation. International Journal of Cancer, 2008, 122, 777-784.	5.1	57

CHARLES DE SMET

#	Article	IF	CITATIONS
19	A novel cancer-germline transcript carrying pro-metastatic miR-105 and <i>TET</i> -targeting miR-767 induced by DNA hypomethylation in tumors. Epigenetics, 2014, 9, 1163-1171.	2.7	56
20	The Majority of Autologous Cytolytic T-Lymphocyte Clones Derived from Peripheral Blood Lymphocytes of a Melanoma Patient Recognize an Antigenic Peptide Derived from Gene Pmel17/gp100. Journal of Investigative Dermatology, 1996, 107, 63-67.	0.7	54
21	Photoreceptor proteins as cancer-retina antigens. International Journal of Cancer, 2007, 120, 1268-1276.	5.1	47
22	DNA Hypomethylation and Activation of Germline-Specific Genes in Cancer. Advances in Experimental Medicine and Biology, 2013, 754, 149-166.	1.6	41
23	Alternative Promoters of Gene MAGE4a. Genomics, 1997, 40, 305-313.	2.9	29
24	Epigenetic Hierarchy within the MAGEA1 Cancer-Germline Gene: Promoter DNA Methylation Dictates Local Histone Modifications. PLoS ONE, 2013, 8, e58743.	2.5	26
25	Cancer-linked satellite 2 DNA hypomethylation does not regulate Sat2 non-coding RNA expression and is initiated by heat shock pathway activation. Epigenetics, 2012, 7, 903-913.	2.7	25
26	Epigenetic Induction of EGR-1 Expression by the Amyloid Precursor Protein during Exposure to Novelty. PLoS ONE, 2013, 8, e74305.	2.5	22
27	Identification of Human Testis-Specific Transcripts and Analysis of Their Expression in Tumor Cells. Biochemical and Biophysical Research Communications, 1997, 241, 653-657.	2.1	21
28	A gene expression signature identifying transient DNMT1 depletion as a causal factor of cancer-germline gene activation in melanoma. Clinical Epigenetics, 2015, 7, 114.	4.1	17
29	Genes coding for melanoma antigens recognised by cytolytic T lymphocytes. Eye, 1997, 11, 243-248.	2.1	16
30	Aberrant demethylation of the recoverin gene is involved in the aberrant expression of recoverin in cancer cells. Experimental Dermatology, 2010, 19, 1023-1025.	2.9	16
31	PAR-TERRA is the main contributor to telomeric repeat-containing RNA transcripts in normal and cancer mouse cells. Rna, 2021, 27, 106-121.	3.5	16
32	Efficient expression of tumâ^' antigen P91A by transfected subgenic fragments. Immunogenetics, 1992, 35, 241-252.	2.4	15
33	DNA Methylation-Associated Repression of Cancer-Germline Genes in Human Embryonic and Adult Stem Cells. Stem Cells, 2009, 27, 822-824.	3.2	14
34	Demethylation of the <i>FOXP3</i> gene in human melanoma cells precludes the use of this epigenetic mark for quantification of Tregs in unseparated melanoma samples. International Journal of Cancer, 2012, 130, 1960-1966.	5.1	14
35	Therapy-induced DNA methylation inactivates MCT1 and renders tumor cells vulnerable to MCT4 inhibition. Cell Reports, 2021, 35, 109202.	6.4	14
36	Dnmt3a-mediated inhibition of Wnt in cardiac progenitor cells improves differentiation and remote remodeling after infarction. JCI Insight, 2017, 2, .	5.0	12

CHARLES DE SMET

#	Article	IF	CITATIONS
37	Mouse embryonic stem cells induce targeted DNA demethylation within human MAGE-A1 transgenes. Epigenetics, 2008, 3, 38-42.	2.7	11
38	Silencing of cancer-germline genes in human preimplantation embryos: Evidence for active de novo DNA methylation in stem cells. Biochemical and Biophysical Research Communications, 2012, 417, 187-191.	2.1	8
39	Transcriptional overlap links DNA hypomethylation with DNA hypermethylation at adjacent promoters in cancer. Scientific Reports, 2021, 11, 17346.	3.3	8
40	Mapping of the genes encoding tum- transplantation antigens P91A, P35B, and P198. Immunogenetics, 1992, 35, 316-323.	2.4	7
41	Epigenetic Coactivation of MAGEA6 and CT-GABRA3 Defines Orientation of a Segmental Duplication in the Human X Chromosome. Cytogenetic and Genome Research, 2019, 159, 12-18.	1.1	7
42	Identification of Tissue-Specific Gene Clusters Induced by DNA Demethylation in Lung Adenocarcinoma: More Than Germline Genes. Cancers, 2022, 14, 1007.	3.7	7
43	A novel seven transmembrane receptor induced during the early steps of astrocyte differentiation identified by differential expression. Journal of Neurochemistry, 2002, 81, 575-588.	3.9	4