

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4511259/publications.pdf Version: 2024-02-01

PINC XU

#	Article	IF	CITATIONS
1	Soil bioremediation by Pseudomonas brassicacearum MPDS and its enzyme involved in degrading PAHs. Science of the Total Environment, 2022, 813, 152522.	3.9	15
2	Enabling QTY Server for Designing Water-Soluble α-Helical Transmembrane Proteins. MBio, 2022, 13, e0360421.	1.8	10
3	Reliable detection of Listeria monocytogenes by a portable paper-based multi-biocatalyst platform integrating three biomarkers: Gene hly, acetoin, and listeriolysin O protein. Journal of Electroanalytical Chemistry, 2022, 905, 115975.	1.9	3
4	Rapid production of <scp>l</scp> â€DOPA by <i>Vibrio natriegens</i> , an emerging nextâ€generation wholeâ€cell catalysis chassis. Microbial Biotechnology, 2022, 15, 1610-1621.	2.0	11
5	Direct carbon capture for the production of high-performance biodegradable plastics by cyanobacterial cell factories. Green Chemistry, 2022, 24, 4470-4483.	4.6	18
6	Enhanced <scp>l</scp> -Serine Production from Glycerol by Integration with Thermodynamically Favorable <scp>d-</scp> Glycerate Oxidation. ACS Sustainable Chemistry and Engineering, 2022, 10, 2587-2592.	3.2	5
7	Biotechnological production of chiral acetoin. Trends in Biotechnology, 2022, 40, 958-973.	4.9	7
8	A thermophile <i>Hydrogenibacillus</i> sp. strain efficiently degrades environmental pollutants polycyclic aromatic hydrocarbons. Environmental Microbiology, 2022, 24, 436-450.	1.8	10
9	Flow Electrochemistry Enables Microbial Atmospheric CO ₂ Fixation via Coupling with Iodine-Mediated Organic Reactions. ACS Sustainable Chemistry and Engineering, 2022, 10, 541-551.	3.2	7
10	Biocatalytic CO ₂ fixation initiates selective oxidative cracking of 1-naphthol under ambient conditions. Green Chemistry, 2022, 24, 4766-4771.	4.6	2
11	A d,l-lactate biosensor based on allosteric transcription factor LldR and amplified luminescent proximity homogeneous assay. Biosensors and Bioelectronics, 2022, 211, 114378.	5.3	6
12	Insights from comparative proteomic analysis into degradation of phenanthrene and salt tolerance by the halophilic Martelella strain AD-3. Ecotoxicology, 2021, 30, 1499-1510.	1.1	4
13	A Pseudomonas sp. strain uniquely degrades PAHs and heterocyclic derivatives via lateral dioxygenation pathways. Journal of Hazardous Materials, 2021, 403, 123956.	6.5	51
14	Unique regulator SrpR mediates crosstalk between efflux pumps TtgABC and SrpABC in <i>Pseudomonas putida</i> B6â€⊋ (DSM 28064). Molecular Microbiology, 2021, 115, 131-141.	1.2	6
15	Nanoporous gold: A review and potentials in biotechnological and biomedical applications. Nano Select, 2021, 2, 1437-1458.	1.9	20
16	Aggregated structures and their functionalities in hydrogels. Aggregate, 2021, 2, e33.	5.2	39
17	Structure-guided insights into heterocyclic ring-cleavage catalysis of the non-heme Fe (II) dioxygenase NicX. Nature Communications, 2021, 12, 1301.	5.8	5
18	A cold shock protein promotes high-temperature microbial growth through binding to diverse RNA species. Cell Discovery, 2021, 7, 15.	3.1	15

Ping Xu

#	Article	IF	CITATIONS
19	Characterization of Lysozyme-Like Effector TseP Reveals the Dependence of Type VI Secretion System (T6SS) Secretion on Effectors in Aeromonas dhakensis Strain SSU. Applied and Environmental Microbiology, 2021, 87, e0043521.	1.4	11
20	2,3-Butanediol synthesis from glucose supplies NADH for elimination of toxic acetate produced during overflow metabolism. Cell Discovery, 2021, 7, 43.	3.1	12
21	An l-2-hydroxyglutarate biosensor based on specific transcriptional regulator LhgR. Nature Communications, 2021, 12, 3619.	5.8	21
22	Genetic mapping of highly versatile and solventâ€tolerant <i>Pseudomonas putida</i> <scp>B6</scp> â€2 (<scp>ATCC BAA</scp> â€2545) as a â€~superstar' for mineralization <scp>PAHs</scp> and dioxinâ€like compounds. Environmental Microbiology, 2021, 23, 4309-4325.	of.8	19
23	Matcha Green Tea Alleviates Non-Alcoholic Fatty Liver Disease in High-Fat Diet-Induced Obese Mice by Regulating Lipid Metabolism and Inflammatory Responses. Nutrients, 2021, 13, 1950.	1.7	22
24	Coculture of <i>Gluconobacter oxydans</i> and <i>Escherichia coli</i> for 3,4-Dihydroxybutyric Acid Production from Xylose. ACS Sustainable Chemistry and Engineering, 2021, 9, 10809-10817.	3.2	8
25	Structural, Mechanistic, and Functional Insights into an Arthrobacter nicotinovorans Molybdenum Hydroxylase Involved in Nicotine Degradation. Molecules, 2021, 26, 4387.	1.7	2
26	Molecular mechanisms and biochemical analysis of fluorene degradation by the Pseudomonas sp. SMT-1 strain. 3 Biotech, 2021, 11, 416.	1.1	2
27	Dehydrogenation Mechanism of Three Stereoisomers of Butane-2,3-Diol in Pseudomonas putida KT2440. Frontiers in Bioengineering and Biotechnology, 2021, 9, 728767.	2.0	2
28	Hexabromocyclododecanes Are Dehalogenated by CYP168A1 from <i>Pseudomonas aeruginosa</i> Strain HS9. Applied and Environmental Microbiology, 2021, 87, e0082621.	1.4	14
29	Microbial degradation of multiple PAHs by a microbial consortium and its application on contaminated wastewater. Journal of Hazardous Materials, 2021, 419, 126524.	6.5	39
30	VgrC-dependent effectors and chaperones modulate the assembly of the type VI secretion system. PLoS Pathogens, 2021, 17, e1010116.	2.1	21
31	A d-2-hydroxyglutarate biosensor based on specific transcriptional regulator DhdR. Nature Communications, 2021, 12, 7108.	5.8	14
32	Biological insights into non-model microbial hosts through stable-isotope metabolic flux analysis. Current Opinion in Biotechnology, 2020, 64, 32-38.	3.3	7
33	Microbial Production of Hydrogen by Mixed Culture Technologies: A Review. Biotechnology Journal, 2020, 15, e1900297.	1.8	24
34	Pollution and biodegradation of hexabromocyclododecanes: A review. Frontiers of Environmental Science and Engineering, 2020, 14, 1.	3.3	20
35	Phenol biodegradation by Acinetobacter radioresistens APH1 and its application in soil bioremediation. Applied Microbiology and Biotechnology, 2020, 104, 427-437.	1.7	51
36	Microbial colonization of different microplastic types and biotransformation of sorbed PCBs by a marine anaerobic bacterial community. Science of the Total Environment, 2020, 705, 135790.	3.9	79

#	Article	IF	CITATIONS
37	Stress Relaxation and Underlying Structure Evolution in Tough and Self-Healing Hydrogels. ACS Macro Letters, 2020, 9, 1582-1589.	2.3	31
38	Kinetic characteristics of longâ€ŧerm repeated fedâ€batch (LtRFb) <scp>lâ€</scp> lactic acid fermentation by a <i>Bacillus coagulans</i> strain. Engineering in Life Sciences, 2020, 20, 562-570.	2.0	13
39	Structural Insights into 6-Hydroxypseudooxynicotine Amine Oxidase from <i>Pseudomonas geniculata</i> N1, the Key Enzyme Involved in Nicotine Degradation. Applied and Environmental Microbiology, 2020, 86, .	1.4	7
40	Hydrogels as dynamic memory with forgetting ability. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18962-18968.	3.3	76
41	Efficient 2,3-butanediol production from whey powder using metabolically engineered Klebsiella oxytoca. Microbial Cell Factories, 2020, 19, 162.	1.9	27
42	Molecular Deceleration Regulates Toxicant Release to Prevent Cell Damage in Pseudomonas putida S16 (DSM 28022). MBio, 2020, 11, .	1.8	4
43	Pyruvate Production from Whey Powder by Metabolic Engineered <i>Klebsiella oxytoca</i> . Journal of Agricultural and Food Chemistry, 2020, 68, 15275-15283.	2.4	6
44	Lamellar Bilayer to Fibril Structure Transformation of Tough Photonic Hydrogel under Elongation. Macromolecules, 2020, 53, 4711-4721.	2.2	7
45	Metabolic Engineering of Bacillus licheniformis for Production of Acetoin. Frontiers in Bioengineering and Biotechnology, 2020, 8, 125.	2.0	21
46	Mesoscale bicontinuous networks in self-healing hydrogels delay fatigue fracture. Proceedings of the United States of America, 2020, 117, 7606-7612.	3.3	86
47	Phase Separation Behavior in Tough and Self-Healing Polyampholyte Hydrogels. Macromolecules, 2020, 53, 5116-5126.	2.2	49
48	Nextâ€Generation Microbial Workhorses: Comparative Genomic Analysis of Fastâ€Growing <i>Vibrio</i> Strains Reveals Their Biotechnological Potential. Biotechnology Journal, 2020, 15, e1900499.	1.8	9
49	Maximization of the petroleum biodegradation using a synthetic bacterial consortium based on minimal value algorithm. International Biodeterioration and Biodegradation, 2020, 150, 104964.	1.9	7
50	Intramolecular chaperone-mediated secretion of an Rhs effector toxin by a type VI secretion system. Nature Communications, 2020, 11, 1865.	5.8	46
51	The HBCDs biodegradation using a Pseudomonas strain and its application in soil phytoremediation. Journal of Hazardous Materials, 2019, 380, 120833.	6.5	40
52	Characterization of environmentally friendly degradation of hexabromocyclododecane by a Bacillus strain HBCD-sjtu. International Biodeterioration and Biodegradation, 2019, 145, 104794.	1.9	13
53	An onboard checking mechanism ensures effector delivery of the type VI secretion system in <i>Vibrio cholerae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23292-23298.	3.3	45
54	High ectoine production by an engineered Halomonas hydrothermalis Y2 in a reduced salinity medium. Microbial Cell Factories, 2019, 18, 184.	1.9	29

#	Article	IF	CITATIONS
55	Enhancing Bioremediation Potential of Pseudomonas putida by Developing Its Acid Stress Tolerance With Glutamate Decarboxylase Dependent System and Global Regulator of Extreme Radiation Resistance. Frontiers in Microbiology, 2019, 10, 2033.	1.5	21
56	Regulation of Glutarate Catabolism by GntR Family Regulator CsiR and LysR Family Regulator GcdR in Pseudomonas putida KT2440. MBio, 2019, 10, .	1.8	15
57	Effect of Structure Heterogeneity on Mechanical Performance of Physical Polyampholytes Hydrogels. Macromolecules, 2019, 52, 7369-7378.	2.2	42
58	A Pandas complex adapted for piRNA-guided transcriptional silencing and heterochromatin formation. Nature Cell Biology, 2019, 21, 1261-1272.	4.6	49
59	Microbial degradation of nitrogen heterocycles. International Biodeterioration and Biodegradation, 2019, 142, 170-171.	1.9	3
60	Cloning and characterization the nicotine degradation enzymes 6-hydroxypseudooxynicotine amine oxidase and 6-hydroxy-3-succinoylpyridine hydroxylase in Pseudomonas geniculata N1. International Biodeterioration and Biodegradation, 2019, 142, 83-90.	1.9	7
61	Regulatory Mechanism of Nicotine Degradation in <i>Pseudomonas putida</i> . MBio, 2019, 10, .	1.8	21
62	Isolation, Characterization, and Genomic Analysis of <i>Pseudomonas</i> sp. Strain SMT-1, an Efficient Fluorene-Degrading Bacterium. Evolutionary Bioinformatics, 2019, 15, 117693431984351.	0.6	7
63	Power generation and microbial community analysis in microbial fuel cells: A promising system to treat organic acid fermentation wastewater. Bioresource Technology, 2019, 284, 72-79.	4.8	80
64	Metabolite-based mutualism enhances hydrogen production in a two-species microbial consortium. Communications Biology, 2019, 2, 82.	2.0	32
65	Characterization of a Dibenzofuran-degrading strain of Pseudomonas aeruginosa, FA-HZ1. Environmental Pollution, 2019, 250, 262-273.	3.7	16
66	Molecular Mechanism of <i>N</i> , <i>N</i> -Dimethylformamide Degradation in <i>Methylobacterium</i> sp. Strain DM1. Applied and Environmental Microbiology, 2019, 85, .	1.4	37
67	l-Lactic acid production by Bacillus coagulans through simultaneous saccharification and fermentation of lignocellulosic corncob residue. Bioresource Technology Reports, 2019, 6, 131-137.	1.5	48
68	Steps Toward Highâ€Performance PLA: Economical Production of <scp>d</scp> ‣actate Enabled by a Newly Isolated <i>Sporolactobacillus terrae</i> Strain. Biotechnology Journal, 2019, 14, e1800656.	1.8	17
69	Production of <scp>d-</scp> Xylonate from Corn Cob Hydrolysate by a Metabolically Engineered <i>Escherichia coli</i> Strain. ACS Sustainable Chemistry and Engineering, 2019, 7, 2160-2168.	3.2	20
70	Potassium resistance of halotolerant and alkaliphilic Halomonas sp. Y2 by a Na+-induced K+ extrusion mechanism. Microbiology (United Kingdom), 2019, 165, 411-418.	0.7	3
71	Bacterial electroactivity and viability depends on the carbon nanotube-coated sponge anode used in a microbial fuel cell. Bioelectrochemistry, 2018, 122, 26-31.	2.4	17
72	An engineered Pseudomonas putida can simultaneously degrade organophosphates, pyrethroids and carbamates. Science of the Total Environment, 2018, 628-629, 1258-1265.	3.9	66

#	Article	IF	CITATIONS
73	Titelbild: Temperatureâ€Directed Biocatalysis for the Sustainable Production of Aromatic Aldehydes or Alcohols (Angew. Chem. 5/2018). Angewandte Chemie, 2018, 130, 1133-1133.	1.6	Ο
74	Temperatureâ€Ðirected Biocatalysis for the Sustainable Production of Aromatic Aldehydes or Alcohols. Angewandte Chemie - International Edition, 2018, 57, 1214-1217.	7.2	43
75	Temperatureâ€Directed Biocatalysis for the Sustainable Production of Aromatic Aldehydes or Alcohols. Angewandte Chemie, 2018, 130, 1228-1231.	1.6	7
76	Innenrücktitelbild: Remodeling of the Photosynthetic Chain Promotes Direct CO ₂ Conversion into Valuable Aromatic Compounds (Angew. Chem. 49/2018). Angewandte Chemie, 2018, 130, 16469-16469.	1.6	1
77	2-Hydroxy-4-(3′-oxo-3′H-benzofuran-2′-yliden)but-2-enoic acid biosynthesis from dibenzofuran using lateral dioxygenation in a Pseudomonas putida strain B6-2 (DSM 28064). Bioresources and Bioprocessing, 2018, 5, .	2.0	2
78	Enhancing Light-Driven 1,3-Propanediol Production by Using Natural Compartmentalization of Differentiated Cells. ACS Synthetic Biology, 2018, 7, 2436-2446.	1.9	14
79	Remodeling of the Photosynthetic Chain Promotes Direct CO2Conversion into Valuable Aromatic Compounds. Angewandte Chemie, 2018, 130, 16222-16226.	1.6	6
80	Remodeling of the Photosynthetic Chain Promotes Direct CO ₂ Conversion into Valuable Aromatic Compounds. Angewandte Chemie - International Edition, 2018, 57, 15990-15994.	7.2	25
81	Engineering of glycerol utilization in Gluconobacter oxydans 621H for biocatalyst preparation in a low-cost way. Microbial Cell Factories, 2018, 17, 158.	1.9	10
82	Production of value-added chemicals from glycerol using in vitro enzymatic cascades. Communications Chemistry, 2018, 1, .	2.0	37
83	A Coenzyme-Free Biocatalyst for the Value-Added Utilization of Lignin-Derived Aromatics. Journal of the American Chemical Society, 2018, 140, 16001-16005.	6.6	63
84	Multiscale Energy Dissipation Mechanism in Tough and Self-Healing Hydrogels. Physical Review Letters, 2018, 121, 185501.	2.9	104
85	Genome sequence of Halomonas hydrothermalis Y2, an efficient ectoine-producer isolated from pulp mill wastewater. Journal of Biotechnology, 2018, 285, 38-41.	1.9	9
86	d-2-Hydroxyglutarate dehydrogenase plays a dual role in l-serine biosynthesis and d-malate utilization in the bacterium Pseudomonas stutzeri. Journal of Biological Chemistry, 2018, 293, 15513-15523.	1.6	13
87	Increased glutarate production by blocking the glutaryl-CoA dehydrogenation pathway and a catabolic pathway involving I-2-hydroxyglutarate. Nature Communications, 2018, 9, 2114.	5.8	48
88	Complete genome sequence of Bacillus sp. HBCD-sjtu, an efficient HBCD-degrading bacterium. 3 Biotech, 2018, 8, 291.	1.1	18
89	The plasticity of indigenous microbial community in a full-scale heavy oil-produced water treatment plant. Journal of Hazardous Materials, 2018, 358, 155-164.	6.5	14
90	2,3â€Butanediol catabolism in <i>Pseudomonas aeruginosa</i> PAO1. Environmental Microbiology, 2018, 20, 3927-3940.	1.8	22

#	Article	IF	CITATIONS
91	Purification and Initial Characterization of 3-Hydroxybenzoate 6-Hydroxylase From a Halophilic Martelella Strain AD-3. Frontiers in Microbiology, 2018, 9, 1335.	1.5	5
92	Two NADâ€independent <scp>l</scp> â€lactate dehydrogenases drive <scp>l</scp> â€lactate utilization in <i>Pseudomonas aeruginosa</i> PAO1. Environmental Microbiology Reports, 2018, 10, 569-575.	1.0	7
93	Critical Functions of Region 1-67 and Helix XIII in Retaining the Active Structure of NhaD Antiporter in Halomonas sp. Y2. Frontiers in Microbiology, 2018, 9, 831.	1.5	8
94	Engineering Cyanobacteria for Photosynthetic Production of C3 Platform Chemicals and Terpenoids from CO2. Advances in Experimental Medicine and Biology, 2018, 1080, 239-259.	0.8	6
95	Complete Genome Sequence of Pseudomonas aeruginosa FA-HZ1, an Efficient Dibenzofuran-Degrading Bacterium. Genome Announcements, 2017, 5, .	0.8	2
96	1,3-Propanediol production by a newly isolated strain, Clostridium perfringens GYL. Bioresource Technology, 2017, 233, 406-412.	4.8	23
97	Nanoporous gold-based microbial biosensor for direct determination of sulfide. Biosensors and Bioelectronics, 2017, 98, 29-35.	5.3	47
98	Effect of Fe3O4 nanoparticles on Sphingobium yanoikuyae XLDN2-5 cells in carbazole biodegradation. Nanotechnology for Environmental Engineering, 2017, 2, 1.	2.0	4
99	Functional Interaction between the N and C Termini of NhaD Antiporters from Halomonas sp. Strain Y2. Journal of Bacteriology, 2017, 199, .	1.0	8
100	Coordination of metabolic pathways: Enhanced carbon conservation in 1,3-propanediol production by coupling with optically pure lactate biosynthesis. Metabolic Engineering, 2017, 41, 102-114.	3.6	46
101	Enzymatic Cascades for Efficient Biotransformation of Racemic Lactate Derived from Corn Steep Water. ACS Sustainable Chemistry and Engineering, 2017, 5, 3456-3464.	3.2	22
102	Unveiling the biotransformation mechanism of indole in a <i>Cupriavidus</i> sp. strain. Molecular Microbiology, 2017, 106, 905-918.	1.2	39
103	Multiple Roles for Two Efflux Pumps in the Polycyclic Aromatic Hydrocarbon-Degrading Pseudomonas putida Strain B6-2 (DSM 28064). Applied and Environmental Microbiology, 2017, 83, .	1.4	25
104	Simultaneous hydrolysis of carbaryl and chlorpyrifos by Stenotrophomonas sp. strain YC-1 with surface-displayed carbaryl hydrolase. Scientific Reports, 2017, 7, 13391.	1.6	6
105	Coupling between <scp>d</scp> -3-phosphoglycerate dehydrogenase and <scp>d</scp> -2-hydroxyglutarate dehydrogenase drives bacterial <scp>l</scp> -serine synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7574-E7582.	3.3	41
106	Tough, self-recovery and self-healing polyampholyte hydrogels. Polymer Science - Series C, 2017, 59, 11-17.	0.8	12
107	A Bacterial Multidomain NAD-Independent <scp>d</scp> -Lactate Dehydrogenase Utilizes Flavin Adenine Dinucleotide and Fe-S Clusters as Cofactors and Quinone as an Electron Acceptor for <scp>d</scp> -Lactate Oxidization. Journal of Bacteriology, 2017, 199, .	1.0	12
108	Directing enzyme devolution for biosynthesis of alkanols and 1,n-alkanediols from natural polyhydroxy compounds. Metabolic Engineering, 2017, 44, 70-80.	3.6	12

#	Article	IF	CITATIONS
109	Combinatorial metabolic engineering of Pseudomonas putida KT2440 for efficient mineralization of 1,2,3-trichloropropane. Scientific Reports, 2017, 7, 7064.	1.6	34
110	Switch of metabolic status: redirecting metabolic flux for acetoin production from glycerol by activating a silent glycerol catabolism pathway. Metabolic Engineering, 2017, 39, 90-101.	3.6	36
111	Structural basis for the transcriptional repressor NicR2 in nicotine degradation from <scp><i>P</i></scp> <i>seudomonas</i> . Molecular Microbiology, 2017, 103, 165-180.	1.2	3
112	Efficient secretory expression of recombinant proteins in Escherichia coli with a novel actinomycete signal peptide. Protein Expression and Purification, 2017, 129, 69-74.	0.6	11
113	Functional and cooperative stabilization of a two-metal (Ca, Zn) center in α-amylase derived from Flavobacteriaceae species. Scientific Reports, 2017, 7, 17933.	1.6	16
114	Coexistence of two <scp>d</scp> â€lactateâ€utilizing systems in <i>Pseudomonas putida</i> KT2440. Environmental Microbiology Reports, 2016, 8, 699-707.	1.0	8
115	Carbon Flux Trapping: Highly Efficient Production of Polymerâ€Grade <scp>d</scp> â€Lactic Acid with a Thermophilic <scp>d</scp> â€Lactate Dehydrogenase. ChemBioChem, 2016, 17, 1491-1494.	1.3	20
116	Efficient production of propionic acid through high density culture with recycling cells of Propionibacterium acidipropionici. Bioresource Technology, 2016, 216, 856-861.	4.8	23
117	Co-utilization of glycerol and lignocellulosic hydrolysates enhances anaerobic 1,3-propanediol production by Clostridium diolis. Scientific Reports, 2016, 6, 19044.	1.6	57
118	Sequence similarity network analysis, crystallization, and X-ray crystallographic analysis of the lactate metabolism regulator LldR from Pseudomonas aeruginosa. Bioresources and Bioprocessing, 2016, 3, .	2.0	0
119	Contracted but effective: production of enantiopure 2,3-butanediol by thermophilic and GRAS Bacillus licheniformis. Green Chemistry, 2016, 18, 4693-4703.	4.6	66
120	A photoautotrophic platform for the sustainable production of valuable plant natural products from CO ₂ . Green Chemistry, 2016, 18, 3537-3548.	4.6	26
121	Stretching-induced ion complexation in physical polyampholyte hydrogels. Soft Matter, 2016, 12, 8833-8840.	1.2	47
122	Complete Genome Sequence of Sphingomonas sp. Strain NIC1, an Efficient Nicotine-Degrading Bacterium. Genome Announcements, 2016, 4, .	0.8	4
123	Alkaline Response of a Halotolerant Alkaliphilic Halomonas Strain and Functional Diversity of Its Na+(K+)/H+ Antiporters. Journal of Biological Chemistry, 2016, 291, 26056-26065.	1.6	41
124	Enzymatic Resolution by a <scp>d</scp> ‣actate Oxidase Catalyzed Reaction for (<i>S</i>)â€2â€Hydroxycarboxylic Acids. ChemCatChem, 2016, 8, 2630-2633.	1.8	13
125	Overexpression of transport proteins improves the production of 5-aminovalerate from l-lysine in Escherichia coli. Scientific Reports, 2016, 6, 30884.	1.6	24
126	Amperometric inhibitive biosensor based on horseradish peroxidase-nanoporous gold for sulfide determination. Scientific Reports, 2016, 6, 30905.	1.6	14

#	Article	IF	CITATIONS
127	Expression and functional analysis of two NhaD type antiporters from the halotolerant and alkaliphilic Halomonas sp. Y2. Extremophiles, 2016, 20, 631-639.	0.9	14
128	Selective determination of phenols and aromatic amines based on horseradish peroxidase-nanoporous gold co-catalytic strategy. Biosensors and Bioelectronics, 2016, 79, 843-849.	5.3	56
129	Complete genome of Martelella sp. AD-3, a moderately halophilic polycyclic aromatic hydrocarbons-degrading bacterium. Journal of Biotechnology, 2016, 225, 29-30.	1.9	8
130	Biotechnological production of acetoin, a bio-based platform chemical, from a lignocellulosic resource by metabolically engineered Enterobacter cloacae. Green Chemistry, 2016, 18, 1560-1570.	4.6	45
131	Characterization of Pseudooxynicotine Amine Oxidase of Pseudomonas putida S16 that Is Crucial for Nicotine Degradation. Scientific Reports, 2015, 5, 17770.	1.6	16
132	Sustainable production of valuable compound 3-succinoyl-pyridine by genetically engineering Pseudomonas putida using the tobacco waste. Scientific Reports, 2015, 5, 16411.	1.6	23
133	Comparative genome analysis reveals the molecular basis of nicotine degradation and survival capacities of Arthrobacter. Scientific Reports, 2015, 5, 8642.	1.6	44
134	Mimicking a natural pathway for de novo biosynthesis: natural vanillin production from accessible carbon sources. Scientific Reports, 2015, 5, 13670.	1.6	74
135	Functional Identification of a Novel Gene, moaE, for 3-Succinoylpyridine Degradation in Pseudomonas putida S16. Scientific Reports, 2015, 5, 13464.	1.6	5
136	Identification and Characterization of a Novel Gentisate 1,2-Dioxygenase Gene from a Halophilic Martelella Strain. Scientific Reports, 2015, 5, 14307.	1.6	15
137	A novel biocatalyst for efficient production of 2-oxo-carboxylates using glycerol as the cost-effective carbon source. Biotechnology for Biofuels, 2015, 8, 186.	6.2	12
138	Metabolic engineering of Escherichia coli for production of (2S,3S)-butane-2,3-diol from glucose. Biotechnology for Biofuels, 2015, 8, 143.	6.2	41
139	Comparative Transcriptome Analysis Reveals Different Molecular Mechanisms of Bacillus coagulans 2-6 Response to Sodium Lactate and Calcium Lactate during Lactic Acid Production. PLoS ONE, 2015, 10, e0124316.	1.1	22
140	Enhancing the light-driven production of d-lactate by engineering cyanobacterium using a combinational strategy. Scientific Reports, 2015, 5, 9777.	1.6	49
141	NAD-Independent l-Lactate Dehydrogenase Required for l-Lactate Utilization in Pseudomonas stutzeri A1501. Journal of Bacteriology, 2015, 197, 2239-2247.	1.0	27
142	Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. Biotechnology Advances, 2015, 33, 1484-1492.	6.0	160
143	Engineering Pseudomonas putida KT2440 for simultaneous degradation of organophosphates and pyrethroids and its application in bioremediation of soil. Biodegradation, 2015, 26, 223-233.	1.5	51
144	Chemical Analysis of the Chinese Liquor Luzhoulaojiao by Comprehensive Two-Dimensional Gas Chromatography/Time-of-Flight Mass Spectrometry. Scientific Reports, 2015, 5, 9553.	1.6	62

Ping Xu

#	Article	IF	CITATIONS
145	Production of C3 platform chemicals from CO ₂ by genetically engineered cyanobacteria. Green Chemistry, 2015, 17, 3100-3110.	4.6	46
146	Utilization of <scp>d</scp> -Lactate as an Energy Source Supports the Growth of Gluconobacter oxydans. Applied and Environmental Microbiology, 2015, 81, 4098-4110.	1.4	21
147	Genome Sequence of an Indigoid-Producing Strain, Pseudomonas sp. Pl1. Genome Announcements, 2015, 3, .	0.8	О
148	Molybdenum-Containing Nicotine Hydroxylase Genes in a Nicotine Degradation Pathway That Is a Variant of the Pyridine and Pyrrolidine Pathways. Applied and Environmental Microbiology, 2015, 81, 8330-8338.	1.4	35
149	Production of diacetyl by metabolically engineered Enterobacter cloacae. Scientific Reports, 2015, 5, 9033.	1.6	24
150	Complete genome sequence of Mycobacterium goodii X7B, a facultative thermophilic biodesulfurizing bacterium with industrial potential. Journal of Biotechnology, 2015, 212, 56-57.	1.9	12
151	Molecular Mechanism of Nicotine Degradation by a Newly Isolated Strain, Ochrobactrum sp. Strain SJY1. Applied and Environmental Microbiology, 2015, 81, 272-281.	1.4	66
152	Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2 R ,3 R) Tj ETQq0 0 0	[.] gBŢ /Over	lock 10 Tf 50
153	Biosensor based on glucose oxidase-nanoporous gold co-catalysis for glucose detection. Biosensors and Bioelectronics, 2015, 66, 350-355.	5.3	81
154	An artificial enzymatic reaction cascade for a cell-free bio-system based on glycerol. Green Chemistry, 2015, 17, 804-807.	4.6	51
155	Betaine and Beet Molasses Enhance L-Lactic Acid Production by Bacillus coagulans. PLoS ONE, 2014, 9, e100731.	1.1	27
156	Engineering chlorpyrifos-degrading Stenotrophomonas sp. YC-1 for heavy metal accumulation and enhanced chlorpyrifos degradation. Biodegradation, 2014, 25, 903-910.	1.5	17
157	A comparative proteomic analysis of Bacillus coagulans in response to lactate stress during the production of l-lactic acid. Biotechnology Letters, 2014, 36, 2545-2549.	1.1	7
158	OPTIMIZATION OF MEDIUM COMPOSITION FOR <i>cis,cis</i> MUCONIC ACID PRODUCTION BY A <i>Pseudomonas</i> sp. MUTANT USING STATISTICAL METHODS. Preparative Biochemistry and Biotechnology, 2014, 44, 342-354.	1.0	12
159	Genome Sequence of <i>meso</i> -2,3-Butanediol-Producing Strain Serratia marcescens ATCC 14041. Genome Announcements, 2014, 2, .	0.8	6
160	Genome Sequence of a Newly Isolated Nicotine-Degrading Bacterium, Ochrobactrum sp. SJY1. Genome Announcements, 2014, 2, .	0.8	9
161	Genome Sequence of Thermophilic Bacillus licheniformis Strain 3F-3, an Efficient Pentose-Utilizing Producer of 2,3-Butanediol. Genome Announcements, 2014, 2, .	0.8	3
162	Genome Sequence of Sporolactobacillus terrae DSM 11697, the Type Strain of the Species. Genome Announcements, 2014, 2, .	0.8	4

#	Article	lF	CITATIONS
163	Draft Genome Sequence of the Gluconobacter oxydans Strain DSM 2003, an Important Biocatalyst for Industrial Use. Genome Announcements, 2014, 2, .	0.8	2
164	Genome Sequence of <i>Martelella</i> sp. Strain AD-3, a Moderately Halophilic Polycyclic Aromatic Hydrocarbon-Degrading Bacterium. Genome Announcements, 2014, 2, .	0.8	10
165	Sinomicrobium pectinilyticum sp. nov., a pectinase-producing bacterium isolated from alkaline and saline soil, and emended description of the genus Sinomicrobium. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 2939-2943.	0.8	13
166	An unusual repressor controls the expression of a crucial nicotineâ€degrading gene cluster in <scp><i>P</i></scp> <i>seudomonas putida</i> â€ <scp>S</scp> 16. Molecular Microbiology, 2014, 91, 1252-1269.	1.2	33
167	Biotechnological production of muconic acid: current status and future prospects. Biotechnology Advances, 2014, 32, 615-622.	6.0	135
168	Efficient production of l-lactic acid using co-feeding strategy based on cane molasses/glucose carbon sources. Bioresource Technology, 2014, 153, 23-29.	4.8	72
169	Close relationship of a novel Flavobacteriaceae α-amylase with archaeal α-amylases and good potentials for industrial applications. Biotechnology for Biofuels, 2014, 7, 18.	6.2	28
170	Efficient calcium lactate production by fermentation coupled with crystallization-based in situ product removal. Bioresource Technology, 2014, 163, 33-39.	4.8	24
171	Lipase-nanoporous gold biocomposite modified electrode for reliable detection of triglycerides. Biosensors and Bioelectronics, 2014, 53, 26-30.	5.3	55
172	Structural insights into the specific recognition of <scp><i>N</i></scp> â€heterocycle biodenitrogenationâ€derived substrates by microbial amide hydrolases. Molecular Microbiology, 2014, 91, 1009-1021.	1.2	12
173	Mechanism of the 6-Hydroxy-3-succinoyl-pyridine 3-Monooxygenase Flavoprotein from Pseudomonas putida S16. Journal of Biological Chemistry, 2014, 289, 29158-29170.	1.6	27
174	Efficient production of 2,3-butanediol from corn stover hydrolysate by using a thermophilic Bacillus licheniformis strain. Bioresource Technology, 2014, 170, 256-261.	4.8	60
175	Glycerol Dehydrogenase Plays a Dual Role in Glycerol Metabolism and 2,3-Butanediol Formation in Klebsiella pneumoniae. Journal of Biological Chemistry, 2014, 289, 6080-6090.	1.6	63
176	Efficient Simultaneous Saccharification and Fermentation of Inulin to 2,3-Butanediol by Thermophilic Bacillus licheniformis ATCC 14580. Applied and Environmental Microbiology, 2014, 80, 6458-6464.	1.4	48
177	Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol. Metabolic Engineering, 2014, 23, 22-33.	3.6	132
178	Construction of a food-grade cell surface display system for Lactobacillus casei. Microbiological Research, 2014, 169, 733-740.	2.5	14
179	Microbial lactate utilization: enzymes, pathogenesis, and regulation. Trends in Microbiology, 2014, 22, 589-599.	3.5	59
180	Genome Sequence of the Nonpathogenic Pseudomonas aeruginosa Strain ATCC 15442. Genome Announcements, 2014, 2, .	0.8	10

#	Article	IF	CITATIONS
181	Green strategy from waste to value-added-chemical production: efficient biosynthesis of 6-hydroxy-3-succinoyl-pyridine by an engineered biocatalyst. Scientific Reports, 2014, 4, 5397.	1.6	42
182	Reconstruction of lactate utilization system in Pseudomonas putida KT2440: a novel biocatalyst for l-2-hydroxy-carboxylate production. Scientific Reports, 2014, 4, 6939.	1.6	9
183	Enzymatic production of 5-aminovalerate from I-lysine using I-lysine monooxygenase and 5-aminovaleramide amidohydrolase. Scientific Reports, 2014, 4, 5657.	1.6	48
184	Genomic analysis of thermophilic Bacillus coagulans strains: efficient producers for platform bio-chemicals. Scientific Reports, 2014, 4, 3926.	1.6	40
185	Physiological and Biochemical Characterization of a Novel Nicotine-Degrading Bacterium Pseudomonas geniculata N1. PLoS ONE, 2014, 9, e84399.	1.1	16
186	Efficient Production of (R)-2-Hydroxy-4-Phenylbutyric Acid by Using a Coupled Reconstructed d-Lactate Dehydrogenase and Formate Dehydrogenase System. PLoS ONE, 2014, 9, e104204.	1.1	9
187	Production of hydroxypyruvate from glycerate by a novel biotechnological route. Bioresource Technology, 2013, 131, 552-554.	4.8	1
188	Efficient biocatalyst by encapsulating lipase into nanoporous gold. Nanoscale Research Letters, 2013, 8, 180.	3.1	13
189	Production of (3S)-acetoin from diacetyl by using stereoselective NADPH-dependent carbonyl reductase and glucose dehydrogenase. Bioresource Technology, 2013, 137, 111-115.	4.8	46
190	A newly isolated Bacillus licheniformisstrain thermophilically produces 2,3-butanediol, a platform and fuel bio-chemical. Biotechnology for Biofuels, 2013, 6, 123.	6.2	87
191	PSP: rapid identification of orthologous coding genes under positive selection across multiple closely related prokaryotic genomes. BMC Genomics, 2013, 14, 924.	1.2	16
192	An efficient magnetically modified microbial cell biocomposite for carbazole biodegradation. Nanoscale Research Letters, 2013, 8, 522.	3.1	22
193	Pulp mill wastewater sediment reveals novel methanogenic and cellulolytic populations. Water Research, 2013, 47, 683-692.	5.3	2
194	Jerusalem artichoke powder: A useful material in producing high-optical-purity l-lactate using an efficient sugar-utilizing thermophilic Bacillus coagulans strain. Bioresource Technology, 2013, 130, 174-180.	4.8	60
195	Improved microbial fuel cell performance by encapsulating microbial cells with a nickel-coated sponge. Biosensors and Bioelectronics, 2013, 41, 848-851.	5.3	34
196	Genome Sequence of Clostridium diolis Strain DSM 15410, a Promising Natural Producer of 1,3-Propanediol. Genome Announcements, 2013, 1, .	0.8	6
197	Genome Sequence of Klebsiella pneumoniae Strain ATCC 25955, an Oxygen-Insensitive Producer of 1,3-Propanediol. Genome Announcements, 2013, 1, .	0.8	3
198	Genome Sequence of Dyella ginsengisoli Strain LA-4, an Efficient Degrader of Aromatic Compounds. Genome Announcements, 2013, 1, .	0.8	14

#	Article	IF	CITATIONS
199	Characterization of a Novel Metagenome-Derived 6-Phospho-β-Glucosidase from Black Liquor Sediment. Applied and Environmental Microbiology, 2013, 79, 2121-2127.	1.4	13
200	Systematic Unraveling of the Unsolved Pathway of Nicotine Degradation in Pseudomonas. PLoS Genetics, 2013, 9, e1003923.	1.5	106
201	Engineering of cofactor regeneration enhances (2S,3S)-2,3-butanediol production from diacetyl. Scientific Reports, 2013, 3, 2643.	1.6	63
202	New Constitutive Vectors: Useful Genetic Engineering Tools for Biocatalysis. Applied and Environmental Microbiology, 2013, 79, 2836-2840.	1.4	32
203	Structural and computational studies of the maleate isomerase from <i><scp>P</scp>seudomonas putida</i> <scp>S</scp> 16 reveal a breathing motion wrapping the substrate inside. Molecular Microbiology, 2013, 87, 1237-1244.	1.2	16
204	Highly stereoselective biosynthesis of (R)-α-hydroxy carboxylic acids through rationally re-designed mutation of d-lactate dehydrogenase. Scientific Reports, 2013, 3, 3401.	1.6	28
205	Iron(II)-dependent dioxygenase and N-formylamide deformylase catalyze the reactions from 5-hydroxy-2-pyridone to maleamate. Scientific Reports, 2013, 3, 3235.	1.6	13
206	Efficient bioconversion of 2,3-butanediol into acetoin using Gluconobacter oxydans DSM 2003. Biotechnology for Biofuels, 2013, 6, 155.	6.2	39
207	Genome Sequence of Sphingomonas xenophaga QYY, an Anthraquinone-Degrading Strain. Genome Announcements, 2013, 1, .	0.8	4
208	Genome Sequences of Two Morphologically Distinct and Thermophilic Bacillus coagulans Strains, H-1 and XZL9. Genome Announcements, 2013, 1, .	0.8	7
209	Escherichia coli transcription termination factor NusA: heat-induced oligomerization and chaperone activity. Scientific Reports, 2013, 3, 2347.	1.6	29
210	Characterization of Two Streptomyces Enzymes That Convert Ferulic Acid to Vanillin. PLoS ONE, 2013, 8, e67339.	1.1	48
211	Genome Sequence of Pseudomonas stutzeri SDM-LAC, a Typical Strain for Studying the Molecular Mechanism of Lactate Utilization. Journal of Bacteriology, 2012, 194, 894-895.	1.0	21
212	Genome Sequence of Pseudomonas putida S12, a Potential Platform Strain for Industrial Production of Valuable Chemicals. Journal of Bacteriology, 2012, 194, 5985-5986.	1.0	11
213	Relative Catalytic Efficiency of <i>ldhL</i> - and <i>ldhD</i> -Encoded Products Is Crucial for Optical Purity of Lactic Acid Produced by Lactobacillus Strains. Applied and Environmental Microbiology, 2012, 78, 3480-3483.	1.4	29
214	Genome Sequence of the Lactate-Utilizing Pseudomonas aeruginosa Strain XMG. Journal of Bacteriology, 2012, 194, 4751-4752.	1.0	16
215	Genome Sequences of Two Thermophilic Bacillus licheniformis Strains, Efficient Producers of Platform Chemical 2,3-Butanediol. Journal of Bacteriology, 2012, 194, 4133-4134.	1.0	16
216	Genome Sequence of the Welan Gum-Producing Strain Sphingomonas sp. ATCC 31555. Journal of Bacteriology, 2012, 194, 5989-5990.	1.0	22

#	Article	IF	CITATIONS
217	Genome Sequence of Klebsiella pneumoniae LZ, a Potential Platform Strain for 1,3-Propanediol Production. Journal of Bacteriology, 2012, 194, 4457-4458.	1.0	7
218	Lactate Utilization Is Regulated by the FadR-Type Regulator LldR in Pseudomonas aeruginosa. Journal of Bacteriology, 2012, 194, 2687-2692.	1.0	50
219	Genome Sequence of the Thermophile Bacillus coagulans Hammer, the Type Strain of the Species. Journal of Bacteriology, 2012, 194, 6294-6295.	1.0	11
220	Genome Sequences of Pseudomonas luteola XLDN4-9 and Pseudomonas stutzeri XLDN-R, Two Efficient Carbazole-Degrading Strains. Journal of Bacteriology, 2012, 194, 5701-5702.	1.0	11
221	Genome Sequence of Enterobacter cloacae subsp. dissolvens SDM, an Efficient Biomass-Utilizing Producer of Platform Chemical 2,3-Butanediol. Journal of Bacteriology, 2012, 194, 897-898.	1.0	23
222	Genome Sequence of a Novel Nicotine-Degrading Strain, Pseudomonas geniculata N1. Journal of Bacteriology, 2012, 194, 3553-3554.	1.0	10
223	Genomic analysis of Pseudomonas putida: genes in a genome island are crucial for nicotine degradation. Scientific Reports, 2012, 2, 377.	1.6	69
224	Genome Sequence of Sphingomonas wittichii DP58, the First Reported Phenazine-1-Carboxylic Acid-Degrading Strain. Journal of Bacteriology, 2012, 194, 3535-3536.	1.0	13
225	Genome Sequence of a Novel Indigo-Producing Strain, Pseudomonas monteilii QM. Journal of Bacteriology, 2012, 194, 4459-4460.	1.0	9
226	Genome Sequence of a Nicotine-Degrading Strain of Arthrobacter. Journal of Bacteriology, 2012, 194, 5714-5715.	1.0	13
227	Xylanase immobilized nanoporous gold as a highly active and stable biocatalyst. Microporous and Mesoporous Materials, 2012, 161, 1-6.	2.2	36
228	Rationally re-designed mutation of NAD-independent l-lactate dehydrogenase: high optical resolution of racemic mandelic acid by the engineered Escherichia coli. Microbial Cell Factories, 2012, 11, 151.	1.9	17
229	Efficient production of polymer-grade L-lactic acid from corn stover hydrolyzate by thermophilic Bacillus sp. strain XZL4. SpringerPlus, 2012, 1, 43.	1.2	15
230	Identification of nicotine biotransformation intermediates by Agrobacterium tumefaciens strain S33 suggests a novel nicotine degradation pathway. Applied Microbiology and Biotechnology, 2012, 95, 1567-1578.	1.7	52
231	Genome Sequence of Pseudomonas aeruginosa DQ8, an Efficient Degrader of n -Alkanes and Polycyclic Aromatic Hydrocarbons. Journal of Bacteriology, 2012, 194, 6304-6305.	1.0	11
232	NAD-Independent L-Lactate Dehydrogenase Is Required for L-Lactate Utilization in Pseudomonas stutzeri SDM. PLoS ONE, 2012, 7, e36519.	1.1	30
233	Efficient Production of Pyruvate from DL-Lactate by the Lactate-Utilizing Strain Pseudomonas stutzeri SDM. PLoS ONE, 2012, 7, e40755.	1.1	8
234	Biocatalytic production of (2S,3S)-2,3-butanediol from diacetyl using whole cells of engineered Escherichia coli. Bioresource Technology, 2012, 115, 111-116.	4.8	66

#	Article	IF	CITATIONS
235	Efficient conversion of 1,2-butanediol to (R)-2-hydroxybutyric acid using whole cells of Gluconobacter oxydans. Bioresource Technology, 2012, 115, 75-78.	4.8	16
236	Efficient bioconversion of l-threonine to 2-oxobutyrate using whole cells of Pseudomonas stutzeri SDM. Bioresource Technology, 2012, 110, 719-722.	4.8	11
237	Efficient utilization of hemicellulose hydrolysate for propionic acid production using Propionibacterium acidipropionici. Bioresource Technology, 2012, 114, 711-714.	4.8	61
238	Purification and characterization of a flavin reductase from the biodesulfurizing bacterium Mycobacterium goodii X7B. Process Biochemistry, 2012, 47, 1144-1149.	1.8	7
239	Metabolic characterization and genes for the conversion of biphenyl in <i>Dyella ginsengisoli</i> LAâ€4. Biotechnology and Bioengineering, 2012, 109, 609-613.	1.7	8
240	Carotenoids Play a Positive Role in the Degradation of Heterocycles by Sphingobium yanoikuyae. PLoS ONE, 2012, 7, e39522.	1.1	24
241	Efficient 2,3-Butanediol Production from Cassava Powder by a Crop-Biomass-Utilizer, Enterobacter cloacae subsp. dissolvens SDM. PLoS ONE, 2012, 7, e40442.	1.1	42
242	Transcription Elongation Factor GreA Has Functional Chaperone Activity. PLoS ONE, 2012, 7, e47521.	1.1	35
243	Genome Sequence of the Thermophilic Strain Bacillus coagulans2-6, an Efficient Producer of High-Optical-Purity <scp>l</scp> -Lactic Acid. Journal of Bacteriology, 2011, 193, 4563-4564.	1.0	20
244	One-pot bio-synthesis: N-acetyl-d-neuraminic acid production by a powerful engineered whole-cell catalyst. Scientific Reports, 2011, 1, 142.	1.6	42
245	Novel organic solvent-responsive expression vectors for biocatalysis: Application for development of an organic solvent-tolerant biodesulfurizing strain. Bioresource Technology, 2011, 102, 9380-9387.	4.8	25
246	Production of (2S,3S)-2,3-butanediol and (3S)-acetoin from glucose using resting cells of Klebsiella pneumonia and Bacillus subtilis. Bioresource Technology, 2011, 102, 10741-10744.	4.8	63
247	Recent advances in biotechnological production of 2-phenylethanol. Biotechnology Advances, 2011, 29, 654-660.	6.0	183
248	Biotechnological routes based on lactic acid production from biomass. Biotechnology Advances, 2011, 29, 930-939.	6.0	248
249	Highly efficient production of d-lactate by Sporolactobacillus sp. CASD with simultaneous enzymatic hydrolysis of peanut meal. Applied Microbiology and Biotechnology, 2011, 89, 1009-1017.	1.7	114
250	Degradation of n-alkanes and polycyclic aromatic hydrocarbons in petroleum by a newly isolated Pseudomonas aeruginosa DQ8. Bioresource Technology, 2011, 102, 4111-4116.	4.8	229
251	Kinetic resolution of 2-hydroxybutanoate racemic mixtures by NAD-independent l-lactate dehydrogenase. Bioresource Technology, 2011, 102, 4595-4599.	4.8	32
252	Biodiesel production in packed-bed reactors using lipase–nanoparticle biocomposite. Bioresource Technology, 2011, 102, 6352-6355.	4.8	124

#	Article	IF	CITATIONS
253	Genome Sequence of Sphingomonas elodea ATCC 31461, a Highly Productive Industrial Strain of Gellan Gum. Journal of Bacteriology, 2011, 193, 7015-7016.	1.0	18
254	Genome Sequence of Bacillus pumilus S-1, an Efficient Isoeugenol-Utilizing Producer for Natural Vanillin. Journal of Bacteriology, 2011, 193, 6400-6401.	1.0	13
255	Genome Sequence of Rhodococcus erythropolis XP, a Biodesulfurizing Bacterium with Industrial Potential. Journal of Bacteriology, 2011, 193, 6422-6423.	1.0	34
256	Production of <i>N</i> -Acetyl- <scp>d</scp> -Neuraminic Acid by Use of an Efficient Spore Surface Display System. Applied and Environmental Microbiology, 2011, 77, 3197-3201.	1.4	46
257	Complete Genome Sequence of the Nicotine-Degrading Pseudomonas putida Strain S16. Journal of Bacteriology, 2011, 193, 5541-5542.	1.0	60
258	Genome Sequence of Pseudomonas putida Strain B6-2, a Superdegrader of Polycyclic Aromatic Hydrocarbons and Dioxin-Like Compounds. Journal of Bacteriology, 2011, 193, 6789-6790.	1.0	34
259	Genome Sequence of Sphingobium yanoikuyae XLDN2-5, an Efficient Carbazole-Degrading Strain. Journal of Bacteriology, 2011, 193, 6404-6405.	1.0	14
260	Genome Sequence of Pseudomonas putida Idaho, a Unique Organic-Solvent-Tolerant Bacterium. Journal of Bacteriology, 2011, 193, 7011-7012.	1.0	17
261	Chemoenzymatic Synthesis of <i>N</i> -Acetyl- <scp>d</scp> -Neuraminic Acid from <i>N</i> -Acetyl- <scp>d</scp> -Glucosamine by Using the Spore Surface-Displayed <i>N</i> -Acetyl- <scp>d</scp> -Neuraminic Acid Aldolase. Applied and Environmental Microbiology, 2011, 77, 7080-7083.	1.4	17
262	Draft Genome Sequence of Sporolactobacillus inulinus Strain CASD, an Efficient D-Lactic Acid-Producing Bacterium with High-Concentration Lactate Tolerance Capability. Journal of Bacteriology, 2011, 193, 5864-5865.	1.0	14
263	Genome Sequence of Lactobacillus rhamnosus Strain CASL, an Efficient <scp>l</scp> -Lactic Acid Producer from Cheap Substrate Cassava. Journal of Bacteriology, 2011, 193, 7013-7014.	1.0	7
264	Enzyme-Nanoporous Gold Biocomposite: Excellent Biocatalyst with Improved Biocatalytic Performance and Stability. PLoS ONE, 2011, 6, e24207.	1.1	45
265	A Novel NADH-dependent and FAD-containing Hydroxylase Is Crucial for Nicotine Degradation by Pseudomonas putida. Journal of Biological Chemistry, 2011, 286, 39179-39187.	1.6	56
266	Genome Sequence of the Thermophilic Strain Bacillus coagulans XZL4, an Efficient Pentose-Utilizing Producer of Chemicals. Journal of Bacteriology, 2011, 193, 6398-6399.	1.0	12
267	Efficient Conversion of Phenylpyruvic Acid to Phenyllactic Acid by Using Whole Cells of Bacillus coagulans SDM. PLoS ONE, 2011, 6, e19030.	1.1	71
268	An efficient method for N-acetyl-d-neuraminic acid production using coupled bacterial cells with a safe temperature-induced system. Applied Microbiology and Biotechnology, 2010, 86, 481-489.	1.7	42
269	Production of 2,3-butanediol from corncob molasses, a waste by-product in xylitol production. Applied Microbiology and Biotechnology, 2010, 87, 965-970.	1.7	90
270	Biotechnological production and applications of N-acetyl-d-neuraminic acid: current state and perspectives. Applied Microbiology and Biotechnology, 2010, 87, 1281-1289.	1.7	46

#	Article	IF	CITATIONS
271	Cloning, expression, purification, and activity assay of proteins related to D-lactic acid formation in Lactobacillus rhamnosus. Applied Microbiology and Biotechnology, 2010, 87, 2117-2123.	1.7	7
272	Pyruvate producing biocatalyst with constitutive NAD-independent lactate dehydrogenases. Process Biochemistry, 2010, 45, 1912-1915.	1.8	16
273	Metabolic versatility of halotolerant and alkaliphilic strains of Halomonas isolated from alkaline black liquor. Bioresource Technology, 2010, 101, 6778-6784.	4.8	47
274	A novel microbial habitat of alkaline black liquor with very high pollution load: Microbial diversity and the key members in application potentials. Bioresource Technology, 2010, 101, 1737-1744.	4.8	26
275	Repeated open fermentative production of optically pure l-lactic acid using a thermophilic Bacillus sp. strain. Bioresource Technology, 2010, 101, 6494-6498.	4.8	58
276	Kinetics of d-lactic acid production by Sporolactobacillus sp. strain CASD using repeated batch fermentation. Bioresource Technology, 2010, 101, 6499-6505.	4.8	70
277	Production of l-lactic acid by a thermophilic Bacillus mutant using sodium hydroxide as neutralizing agent. Bioresource Technology, 2010, 101, 7570-7576.	4.8	70
278	Efficient production of l-lactic acid from cassava powder by Lactobacillus rhamnosus. Bioresource Technology, 2010, 101, 7895-7901.	4.8	77
279	Efficient production of l-lactic acid from corncob molasses, a waste by-product in xylitol production, by a newly isolated xylose utilizing Bacillus sp. strain. Bioresource Technology, 2010, 101, 7908-7915.	4.8	113
280	Characterization and biotechnological potential of petroleum-degrading bacteria isolated from oil-contaminated soils. Bioresource Technology, 2010, 101, 8452-8456.	4.8	114
281	A Novel Whole-Cell Biocatalyst with NAD+ Regeneration for Production of Chiral Chemicals. PLoS ONE, 2010, 5, e8860.	1.1	124
282	Efficient Production of 2-Oxobutyrate from 2-Hydroxybutyrate by Using Whole Cells of <i>Pseudomonas stutzeri</i> Strain SDM. Applied and Environmental Microbiology, 2010, 76, 1679-1682.	1.4	24
283	Enhanced 2-phenylethanol production from L-phenylalanine via <i>in situ</i> product adsorption. Biocatalysis and Biotransformation, 2010, 28, 259-266.	1.1	59
284	The Genes Coding for the Conversion of Carbazole to Catechol Are Flanked by IS6100 Elements in Sphingomonas sp. Strain XLDN2-5. PLoS ONE, 2010, 5, e10018.	1.1	23
285	Novel Nicotine Oxidoreductase-Encoding Gene Involved in Nicotine Degradation by <i>Pseudomonas putida</i> Strain S16. Applied and Environmental Microbiology, 2009, 75, 772-778.	1.4	54
286	Non-Sterilized Fermentative Production of Polymer-Grade L-Lactic Acid by a Newly Isolated Thermophilic Strain Bacillus sp. 2–6. PLoS ONE, 2009, 4, e4359.	1.1	103
287	Acetoin Catabolism and Acetylbutanediol Formation by Bacillus pumilus in a Chemically Defined Medium. PLoS ONE, 2009, 4, e5627.	1.1	30
288	Immobilization of Lipases onto Magnetic Fe ₃ O ₄ Nanoparticles for Application in Biodiesel Production. ChemSusChem, 2009, 2, 947-950.	3.6	102

#	Article	IF	CITATIONS
289	Characterization of benzoate degradation by newly isolated bacterium Pseudomonas sp. XP-M2. Biochemical Engineering Journal, 2009, 46, 79-82.	1.8	10
290	Formation and identification of trimethylimidazole during tetramethylpyrazine production from glucose by Bacillus strains. Biotechnology Letters, 2009, 31, 1421-1425.	1.1	5
291	Enhanced 2,3-butanediol production by Klebsiella pneumoniae SDM. Applied Microbiology and Biotechnology, 2009, 82, 49-57.	1.7	219
292	Enantioselective oxidation of racemic lactic acid to d-lactic acid and pyruvic acid by Pseudomonas stutzeri SDM. Bioresource Technology, 2009, 100, 1878-1880.	4.8	35
293	Gellan gel beads containing magnetic nanoparticles: An effective biosorbent for the removal of heavy metals from aqueous system. Bioresource Technology, 2009, 100, 2301-2304.	4.8	67
294	Both FMNH2 and FADH2 can be utilized by the dibenzothiophene monooxygenase from a desulfurizing bacterium Mycobacterium goodii X7B. Bioresource Technology, 2009, 100, 2594-2599.	4.8	16
295	New Metabolites in Dibenzofuran Cometabolic Degradation by a Biphenyl-Cultivated <i>Pseudomonas putida</i> Strain B6-2. Environmental Science & Technology, 2009, 43, 8635-8642.	4.6	45
296	Recent Developments in Biodesulfurization of Fossil Fuels. , 2009, 113, 255-274.		15
297	Biotechnological routes to pyruvate production. Journal of Bioscience and Bioengineering, 2008, 105, 169-175.	1.1	86
298	Effects of Carbon Nanotubes on Photoluminescence Properties of Quantum Dots. Journal of Physical Chemistry C, 2008, 112, 939-944.	1.5	84
299	A Novel Gene, Encoding 6-Hydroxy-3-Succinoylpyridine Hydroxylase, Involved in Nicotine Degradation by <i>Pseudomonas putida</i> Strain S16. Applied and Environmental Microbiology, 2008, 74, 1567-1574.	1.4	63
300	Microbial transformation of benzothiophenes, with carbazole as the auxiliary substrate, by Sphingomonas sp. strain XLDN2-5. Microbiology (United Kingdom), 2008, 154, 3804-3812.	0.7	34
301	A Constructed Alkaline Consortium and Its Dynamics in Treating Alkaline Black Liquor with Very High Pollution Load. PLoS ONE, 2008, 3, e3777.	1.1	29
302	Characterization of environmentally friendly nicotine degradation by Pseudomonas putida biotype A strain S16. Microbiology (United Kingdom), 2007, 153, 1556-1565.	0.7	93
303	Biodesulfurization of DBT in tetradecane and crude oil by a facultative thermophilic bacterium Mycobacterium goodii X7B. Journal of Biotechnology, 2007, 127, 222-228.	1.9	74
304	Deproteinization of gellan gum produced by Sphingomonas paucimobilis ATCC 31461. Journal of Biotechnology, 2007, 128, 403-407.	1.9	44
305	Biotransformation of isoeugenol to vanillin by a newly isolated Bacillus pumilus strain: Identification of major metabolites. Journal of Biotechnology, 2007, 130, 463-470.	1.9	94
306	Degradation of Carbazole by Microbial Cells Immobilized in Magnetic Gellan Gum Gel Beads. Applied and Environmental Microbiology, 2007, 73, 6421-6428.	1.4	91

#	Article	IF	CITATIONS
307	DNA-Templated Ordered Array of Gold Nanorods in One and Two Dimensions. Journal of Physical Chemistry C, 2007, 111, 12572-12576.	1.5	67
308	Orotate Phosphoribosyltransferase from <i>Corynebacterium ammoniagenes</i> Lacking a Conserved Lysine. Journal of Bacteriology, 2007, 189, 9030-9036.	1.0	8
309	Cometabolic Degradation of Dibenzofuran and Dibenzothiophene by a Newly Isolated Carbazole-Degrading Sphingomonas sp. Strain. Applied and Environmental Microbiology, 2007, 73, 2832-2838.	1.4	80
310	Acetoin Metabolism in Bacteria. Critical Reviews in Microbiology, 2007, 33, 127-140.	2.7	316
311	Efficient Wholeâ€Cell Biocatalytic Synthesis of <i>N</i> â€Acetylâ€ <scp>D</scp> â€neuraminic Acid. Advanced Synthesis and Catalysis, 2007, 349, 1614-1618.	2.1	39
312	Microbial transformation of propenylbenzenes for natural flavour production. Trends in Biotechnology, 2007, 25, 571-576.	4.9	95
313	Enhanced vanillin production from ferulic acid using adsorbent resin. Applied Microbiology and Biotechnology, 2007, 74, 783-790.	1.7	122
314	Production of uridine 5′-monophosphate by Corynebacterium ammoniagenes ATCC 6872 using a statistically improved biocatalytic process. Applied Microbiology and Biotechnology, 2007, 76, 321-328.	1.7	24
315	Membrane-bound l- and d-lactate dehydrogenase activities of a newly isolated Pseudomonas stutzeri strain. Applied Microbiology and Biotechnology, 2007, 77, 91-98.	1.7	46
316	Design of dendrimer modified carbon nanotubes for gene delivery. Chinese Journal of Cancer Research: Official Journal of China Anti-Cancer Association, Beijing Institute for Cancer Research, 2007, 19, 1-6.	0.7	24
317	Deep Desulfurization of Diesel Oil and Crude Oils by a Newly Isolated Rhodococcus erythropolis Strain. Applied and Environmental Microbiology, 2006, 72, 54-58.	1.4	142
318	Simultaneous Biodetoxification of S, N, and O Pollutants by Engineering of a Carbazole-Degrading Gene Cassette in a Recombinant Biocatalyst. Applied and Environmental Microbiology, 2006, 72, 7373-7376.	1.4	21
319	The Surfactant Tween 80 Enhances Biodesulfurization. Applied and Environmental Microbiology, 2006, 72, 7390-7393.	1.4	74
320	Biodesulfurization in Biphasic Systems Containing Organic Solvents. Applied and Environmental Microbiology, 2006, 72, 4604-4609.	1.4	73
321	Selective Biodegradation of S and N Heterocycles by a Recombinant Rhodococcus erythropolis Strain Containing Carbazole Dioxygenase. Applied and Environmental Microbiology, 2006, 72, 2235-2238.	1.4	33
322	Methods for the preparation of a biodesulfurization biocatalyst using Rhodococcus sp Chemosphere, 2006, 65, 165-169.	4.2	39
323	Microbial degradation of sulfur, nitrogen and oxygen heterocycles. Trends in Microbiology, 2006, 14, 398-405.	3.5	148
324	Microbial desulfurization of gasoline by free whole-cells ofRhodococcus erythropolisXP. FEMS Microbiology Letters, 2006, 258, 284-289.	0.7	36

#	Article	IF	CITATIONS
325	Pseudomonas stutzeri as a novel biocatalyst for pyruvate production from DL-lactate. Biotechnology Letters, 2006, 29, 105-110.	1.1	29
326	Degradation of carbazole and its derivatives by a Pseudomonas sp Applied Microbiology and Biotechnology, 2006, 73, 941-948.	1.7	38
327	Metabolism of isoeugenol via isoeugenol-diol by a newly isolated strain of Bacillussubtilis HS8. Applied Microbiology and Biotechnology, 2006, 73, 771-779.	1.7	56
328	Production of 2,3-Butanediol by Klebsiella Pneumoniae Using Glucose and Ammonium Phosphate. Chinese Journal of Chemical Engineering, 2006, 14, 132-136.	1.7	89
329	Modeling for Gellan Gum Production by Sphingomonas paucimobilis ATCC 31461 in a Simplified Medium. Applied and Environmental Microbiology, 2006, 72, 3367-3374.	1.4	72
330	Microbial Desulfurization of Gasoline in a Mycobacterium goodii X7B Immobilized-Cell System. Applied and Environmental Microbiology, 2005, 71, 276-281.	1.4	85
331	"Green―Route to 6-Hydroxy-3-succinoyl-pyridine from (S)-Nicotine of Tobacco Waste by Whole Cells of aPseudomonasÂsp Environmental Science & Technology, 2005, 39, 6877-6880.	4.6	67
332	Deep desulfurization of hydrodesulfurization-treated diesel oil by a facultative thermophilic bacterium Mycobacterium sp. X7B. FEMS Microbiology Letters, 2003, 223, 301-307.	0.7	100
333	Highly Efficient Conversion of Lactate to Pyruvate Using Whole Cells of Acinetobacter sp Biotechnology Progress, 2003, 19, 1672-1676.	1.3	23
334	Nocardiopsis xinjiangensis sp. nov., a halophilic actinomycete isolated from a saline soil sample in China. International Journal of Systematic and Evolutionary Microbiology, 2003, 53, 317-321.	0.8	50
335	Biodesulfurization of Dibenzothiophene by a Newly Isolated Bacterium Mycobacterium sp. X7B. Journal of Chemical Engineering of Japan, 2003, 36, 1174-1177.	0.3	15
336	Preparation of microbial desulfurization catalysts. Science Bulletin, 2002, 47, 1077.	1.7	6
337	A biocatalyst for pyruvate preparation from dl-lactate: lactate oxidase in a Pseudomonas sp Journal of Molecular Catalysis B: Enzymatic, 2002, 18, 299-305.	1.8	10
338	Microbial desulfurization of fuel oil. Science Bulletin, 2002, 47, 365.	1.7	7
339	Effects of Matrix Proteins on the Expression of Matrix Metalloproteinase-2, -9, and -14 and Tissue Inhibitors of Metalloproteinases in Human Cytotrophoblast Cells During the First Trimester1. Biology of Reproduction, 2001, 65, 240-246.	1.2	68
340	Screening for bacterial strains producing lactate oxidase. Journal of Bioscience and Bioengineering, 1996, 81, 357-359.	0.9	8
341	Characterization of a lactate oxidase from a strain of gram negative bacterium from soil. Applied Biochemistry and Biotechnology, 1996, 56, 277-288.	1.4	15
342	Non-Sterilized Fermentation of 2,3-Butanediol with Seawater by Metabolic Engineered Fast-Growing Vibrio natriegens. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	16