
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4510987/publications.pdf Version: 2024-02-01

FDIC THDANE

#	Article	IF	CITATIONS
1	Probing Extremal Gravitational-wave Events with Coarse-grained Likelihoods. Astrophysical Journal, 2022, 926, 34.	4.5	15
2	Flexible and Accurate Evaluation of Gravitational-wave Malmquist Bias with Machine Learning. Astrophysical Journal, 2022, 927, 76.	4.5	13
3	Linking the rates of neutron star binaries and short gamma-ray bursts. Physical Review D, 2022, 105, .	4.7	21
4	The Imprint of Superradiance on Hierarchical Black Hole Mergers. Astrophysical Journal, 2022, 931, 79.	4.5	3
5	Measuring the Properties of Active Galactic Nuclei Disks with Gravitational Waves. Astrophysical Journal, 2022, 931, 82.	4.5	14
6	Consistency of the Parkes Pulsar Timing Array Signal with a Nanohertz Gravitational-wave Background. Astrophysical Journal Letters, 2022, 932, L22.	8.3	21
7	When models fail: An introduction to posterior predictive checks and model misspecification in gravitational-wave astronomy. Publications of the Astronomical Society of Australia, 2022, 39, .	3.4	12
8	Orbital Dynamics and Extreme Scattering Event Properties from Long-term Scintillation Observations of PSR J1603â ^{~,} 7202. Astrophysical Journal, 2022, 933, 16.	4.5	3
9	Identifying and mitigating noise sources in precision pulsar timing data sets. Monthly Notices of the Royal Astronomical Society, 2021, 502, 478-493.	4.4	47
10	Constraining temperature distribution inside LIGO test masses from frequencies of their vibrational modes. Physical Review D, 2021, 103, .	4.7	2
11	Standard-siren Cosmology Using Gravitational Waves from Binary Black Holes. Astrophysical Journal, 2021, 908, 215.	4.5	28
12	Heavy Double Neutron Stars: Birth, Midlife, and Death. Astrophysical Journal Letters, 2021, 909, L19.	8.3	24
13	Evidence for an intermediate-mass black hole from a gravitationally lensed gamma-ray burst. Nature Astronomy, 2021, 5, 560-568.	10.1	46
14	Memory remains undetected: Updates from the second LIGO/Virgo gravitational-wave transient catalog. Physical Review D, 2021, 104, .	4.7	19
15	Gravitational waves as a probe of globular cluster formation and evolution. Monthly Notices of the Royal Astronomical Society, 2021, 506, 2362-2372.	4.4	11
16	Evidence for Hierarchical Black Hole Mergers in the Second LIGO–Virgo Gravitational Wave Catalog. Astrophysical Journal Letters, 2021, 915, L35.	8.3	86
17	On the Evidence for a Common-spectrum Process in the Search for the Nanohertz Gravitational-wave Background with the Parkes Pulsar Timing Array. Astrophysical Journal Letters, 2021, 917, L19.	8.3	217
18	Bayesian Inference for Gravitational Waves from Binary Neutron Star Mergers in Third Generation Observatories. Physical Review Letters, 2021, 127, 081102.	7.8	21

#	Article	IF	CITATIONS
19	Black-hole spectroscopy, the no-hair theorem, and GW150914: Kerr versus Occam. Physical Review D, 2021, 103, .	4.7	39
20	Inference with finite time series: Observing the gravitational Universe through windows. Physical Review Research, 2021, 3, .	3.6	14
21	Optimized localization for gravitational waves from merging binaries. Monthly Notices of the Royal Astronomical Society, 2021, 509, 3957-3965.	4.4	2
22	Building Better Spin Models for Merging Binary Black Holes: Evidence for Nonspinning and Rapidly Spinning Nearly Aligned Subpopulations. Astrophysical Journal Letters, 2021, 921, L15.	8.3	52
23	Constraints on Weak Supernova Kicks from Observed Pulsar Velocities. Astrophysical Journal Letters, 2021, 920, L37.	8.3	18
24	Signs of Eccentricity in Two Gravitational-wave Signals May Indicate a Subpopulation of Dynamically Assembled Binary Black Holes. Astrophysical Journal Letters, 2021, 921, L31.	8.3	35
25	Implications of Eccentric Observations on Binary Black Hole Formation Channels. Astrophysical Journal Letters, 2021, 921, L43.	8.3	36
26	Did Goryachev <i>et al.</i> detect megahertz gravitational waves?. Physical Review D, 2021, 104, .	4.7	4
27	ls there a spectral turnover in the spin noise of millisecond pulsars?. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3264-3272.	4.4	11
28	The astrophysical odds of GW151216. Monthly Notices of the Royal Astronomical Society, 2020, 498, 1905-1910.	4.4	10
29	Searching for anisotropy in the distribution of binary black hole mergers. Physical Review D, 2020, 102, .	4.7	22
30	Measuring the Primordial Gravitational-Wave Background in the Presence of Astrophysical Foregrounds. Physical Review Letters, 2020, 125, 241101.	7.8	38
31	Gravitational-wave inference in the catalog era: Evolving priors and marginal events. Physical Review D, 2020, 102, .	4.7	21
32	An introduction to Bayesian inference in gravitational-wave astronomy: parameter estimation, model selection, and hierarchical models—Corrigendum. Publications of the Astronomical Society of Australia, 2020, 37, .	3.4	25
33	Bayesian inference for compact binary coalescences with <scp>bilby</scp> : validation and application to the first LIGO–Virgo gravitational-wave transient catalogue. Monthly Notices of the Royal Astronomical Society, 2020, 499, 3295-3319.	4.4	213
34	On the origin of GW190425. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 496, L64-L69.	3.3	46
35	Inferring the population properties of binary black holes from unresolved gravitational waves. Monthly Notices of the Royal Astronomical Society, 2020, 496, 3281-3290.	4.4	16
36	Memory effect or cosmic string? Classifying gravitational-wave bursts with Bayesian inference. Physical Review D, 2020, 102, .	4.7	8

#	Article	IF	CITATIONS
37	Ultrarelativistic astrophysics using multimessenger observations of double neutron stars with LISA and the SKA. Monthly Notices of the Royal Astronomical Society, 2020, 493, 5408-5412.	4.4	12
38	Measuring gravitational-wave memory in the first LIGO/Virgo gravitational-wave transient catalog. Physical Review D, 2020, 101, .	4.7	43
39	Constraining the gravitational-wave afterglow from a binary neutron star coalescence. Monthly Notices of the Royal Astronomical Society, 2020, 492, 4945-4951.	4.4	15
40	A scalable random forest regressor for combining neutron-star equation of state measurements: a case study with GW170817 and GW190425. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5972-5977.	4.4	27
41	Gravitational-wave astronomy with a physical calibration model. Physical Review D, 2020, 102, .	4.7	28
42	Gravitational-wave astronomy with an uncertain noise power spectral density. Physical Review Research, 2020, 2, .	3.6	21
43	Constraining Short Gamma-Ray Burst Jet Properties with Gravitational Waves and Gamma-Rays. Astrophysical Journal, 2020, 893, 38.	4.5	21
44	Black Hole Genealogy: Identifying Hierarchical Mergers with Gravitational Waves. Astrophysical Journal, 2020, 900, 177.	4.5	94
45	Toward the Unambiguous Identification of Supermassive Binary Black Holes through Bayesian Inference. Astrophysical Journal, 2020, 900, 117.	4.5	17
46	GW190521: Orbital Eccentricity and Signatures of Dynamical Formation in a Binary Black Hole Merger Signal. Astrophysical Journal Letters, 2020, 903, L5.	8.3	154
47	Measuring the neutron star equation of state with gravitational waves: The first forty binary neutron star merger observations. Physical Review D, 2019, 100, .	4.7	44
48	Exploring the sensitivity of gravitational wave detectors to neutron star physics. Physical Review D, 2019, 99, .	4.7	78
49	The Mass Distribution of Galactic Double Neutron Stars. Astrophysical Journal, 2019, 876, 18.	4.5	115
50	Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube. Astrophysical Journal, 2019, 870, 134.	4.5	32
51	Bilby: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy. Astrophysical Journal, Supplement Series, 2019, 241, 27.	7.7	526
52	An introduction to Bayesian inference in gravitational-wave astronomy: Parameter estimation, model selection, and hierarchical models. Publications of the Astronomical Society of Australia, 2019, 36, .	3.4	227
53	Searching for eccentricity: signatures of dynamical formation in the first gravitational-wave transient catalogue of LIGO and Virgo. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5210-5216.	4.4	88
54	Parallelized inference for gravitational-wave astronomy. Physical Review D, 2019, 100, .	4.7	62

ERIC THRANE

#	Article	IF	CITATIONS
55	Higher order gravitational-wave modes with likelihood reweighting. Physical Review D, 2019, 100, .	4.7	52
56	Gravitational wave detection without boot straps: A Bayesian approach. Physical Review D, 2019, 100, .	4.7	16
57	Accelerated detection of the binary neutron star gravitational-wave background. Physical Review D, 2019, 100, .	4.7	7
58	The minimum and maximum gravitational-wave background from supermassive binary black holes. Monthly Notices of the Royal Astronomical Society, 2019, 482, 2588-2596.	4.4	18
59	Optimal Search for an Astrophysical Gravitational-Wave Background. Physical Review X, 2018, 8, .	8.9	65
60	Measuring the Binary Black Hole Mass Spectrum with an Astrophysically Motivated Parameterization. Astrophysical Journal, 2018, 856, 173.	4.5	154
61	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. Physical Review Letters, 2018, 121, 231103.	7.8	77
62	All-sky radiometer for narrowband gravitational waves using folded data. Physical Review D, 2018, 98,	4.7	15
63	Measuring eccentricity in binary black hole inspirals with gravitational waves. Physical Review D, 2018, 98, .	4.7	85
64	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	7.8	1,473
65	Gravitational-wave memory: Waveforms and phenomenology. Physical Review D, 2018, 98, .	4.7	32
66	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	7.8	85
67	Inferring the population properties of binary neutron stars with gravitational-wave measurements of spin. Physical Review D, 2018, 98, .	4.7	52
68	Measurement and subtraction of Schumann resonances at gravitational-wave interferometers. Physical Review D, 2018, 97, .	4.7	50
69	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	4.0	98
70	Suspending test masses in terrestrial millihertz gravitational-wave detectors: a case study with a magnetic assisted torsion pendulum. Classical and Quantum Gravity, 2017, 34, 105002.	4.0	1
71	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	7.8	194
72	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	7.8	84

#	Article	IF	CITATIONS
73	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	4.5	131
74	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	2.4	69
75	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	7.8	1,600
76	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	4.5	46
77	A gravitational-wave standard siren measurement of the Hubble constant. Nature, 2017, 551, 85-88.	27.8	674
78	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	7.8	6,413
79	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	8.3	2,314
80	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	4.5	52
81	Determining the population properties of spinning black holes. Physical Review D, 2017, 96, .	4.7	130
82	First Demonstration of Electrostatic Damping of Parametric Instability at Advanced LIGO. Physical Review Letters, 2017, 118, 151102.	7.8	24
83	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	8.3	189
84	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	8.3	156
85	Effects of transients in LIGO suspensions on searches for gravitational waves. Review of Scientific Instruments, 2017, 88, 124501.	1.3	6
86	Polarization-Based Tests of Gravity with the Stochastic Gravitational-Wave Background. Physical Review X, 2017, 7, .	8.9	65
87	Challenges for testing the no-hair theorem with current and planned gravitational-wave detectors. Physical Review D, 2017, 96, .	4.7	38
88	Detecting Gravitational Wave Memory without Parent Signals. Physical Review Letters, 2017, 118, 181103.	7.8	37
89	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	7.8	1,987
90	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	8.3	73

#	Article	IF	CITATIONS
91	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	8.3	968
92	Exploring a search for long-duration transient gravitational waves associated with magnetar bursts. Classical and Quantum Gravity, 2017, 34, 164002.	4.0	6
93	Subtraction of correlated noise in global networks of gravitational-wave interferometers. Classical and Quantum Gravity, 2016, 33, 224003.	4.0	36
94	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	8.3	230
95	Detecting Gravitational-Wave Memory with LIGO: Implications of GW150914. Physical Review Letters, 2016, 117, 061102.	7.8	126
96	Limits of Astrophysics with Gravitational-Wave Backgrounds. Physical Review X, 2016, 6, .	8.9	29
97	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	8.3	146
98	Detectability of Gravitational Waves from High-Redshift Binaries. Physical Review Letters, 2016, 116, 101102.	7.8	15
99	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	7.8	269
100	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	7.8	466
101	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	7.7	44
102	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	7.8	1,224
103	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	7.8	673
104	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	7.8	2,701
105	Gravitational-Wave Cosmology across 29 Decades in Frequency. Physical Review X, 2016, 6, .	8.9	113
106	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	8.3	633
107	Detecting very long-lived gravitational-wave transients lasting hours to weeks. Physical Review D, 2015, 91, .	4.7	24
108	Prospects for searches for long-duration gravitational-waves without time slides. Physical Review D, 2015. 92	4.7	8

#	Article	IF	CITATIONS
109	Mock data and science challenge for detecting an astrophysical stochastic gravitational-wave background with Advanced LIGO and Advanced Virgo. Physical Review D, 2015, 92, .	4.7	36
110	Detecting Gravitation-Wave Transients at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>5</mml:mn><mml:mi>ïf</mml:mi></mml:mrow>: A Hierarchical Approach. Physical Review Letters, 2015, 115, 181102.</mml:math 	7.8	24
111	All-sky, narrowband, gravitational-wave radiometry with folded data. Physical Review D, 2015, 91, .	4.7	10
112	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	4.0	1,029
113	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	4.5	66
114	Method for estimation of gravitational-wave transient model parameters in frequency–time maps. Classical and Quantum Gravity, 2014, 31, 165012.	4.0	10
115	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7.	7.7	57
116	Seedless clustering in all-sky searches for gravitational-wave transients. Physical Review D, 2014, 89, . Search for Nucleon Decay via comilimath xmlns:mml="http://www.w3.org/1998/Math/MathML"	4.7	24
117	display="inline"> <mml:mi>n</mml:mi> <mml:mo stretchy="false">a7'</mml:mo> <mml:mover accent="true"><mml:mi>l¼2</mml:mi><mml:mo stretchy="false">Â⁻<mml:msup><mml:mi>Ï€</mml:mi><mml:mn>0</mml:mn>xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>p</mml:mi>p<mml:mo< td=""><td>ms¤ø><td>nmkaath>an</td></td></mml:mo<></mml:msup></mml:mo </mml:mover 	ms ¤ø > <td>nmkaath>an</td>	nm k aath>an
118	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	7.8	68
119	Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009–2010 LIGO and Virgo Data. Physical Review Letters, 2014, 113, 231101.	7.8	86
120	Statistical properties of astrophysical gravitational-wave backgrounds. Physical Review D, 2014, 89, .	4.7	19
121	Estimates of maximum energy density of cosmological gravitational-wave backgrounds. Physical Review D, 2014, 90, .	4.7	32
122	Search for Dinucleon Decay into Kaons in Super-Kamiokande. Physical Review Letters, 2014, 112, 131803.	7.8	24
123	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Classical and Quantum Gravity, 2014, 31, 165014.	4.0	34
124	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	4.5	125
125	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity, 2014, 31, 115004.	4.0	42
126	Measuring neutron-star ellipticity with measurements of the stochastic gravitational-wave background. Physical Review D, 2014, 89, .	4.7	31

ERIC THRANE

#	Article	IF	CITATIONS
127	<i>Colloquium</i> : Multimessenger astronomy with gravitational waves and high-energy neutrinos. Reviews of Modern Physics, 2013, 85, 1401-1420.	45.6	76
128	Evidence for the Appearance of Atmospheric Tau Neutrinos in Super-Kamiokande. Physical Review Letters, 2013, 110, 181802.	7.8	78
129	Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature Photonics, 2013, 7, 613-619.	31.4	825
130	Searching for gravitational-wave transients with a qualitative signal model: Seedless clustering strategies. Physical Review D, 2013, 88, .	4.7	35
131	Measuring the non-Gaussian stochastic gravitational-wave background: A method for realistic interferometer data. Physical Review D, 2013, 87, .	4.7	32
132	Sensitivity curves for searches for gravitational-wave backgrounds. Physical Review D, 2013, 88, .	4.7	351
133	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28.	7.7	62
134	The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002.	4.0	73
135	Identification of noise artifacts in searches for long-duration gravitational-wave transients. Classical and Quantum Gravity, 2012, 29, 095018.	4.0	15
136	Parameter Estimation in Searches for the Stochastic Gravitational-Wave Background. Physical Review Letters, 2012, 109, 171102.	7.8	61
137	GRAVITATIONAL WAVES FROM FALLBACK ACCRETION ONTO NEUTRON STARS. Astrophysical Journal, 2012, 761, 63.	4.5	42
138	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. Astrophysical Journal, 2012, 760, 12.	4.5	104
139	IMPLICATIONS FOR THE ORIGIN OF GRB 051103 FROM LIGO OBSERVATIONS. Astrophysical Journal, 2012, 755, 2.	4.5	60
140	Search for GUT monopoles at Super–Kamiokande. Astroparticle Physics, 2012, 36, 131-136.	4.3	25
141	Long gravitational-wave transients and associated detection strategies for a network of terrestrial interferometers. Physical Review D, 2011, 83, .	4.7	70
142	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. Astrophysical Journal Letters, 2011, 734, L35.	8.3	55
143	BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR. Astrophysical Journal, 2011, 737, 93.	4.5	89
144	Directional Limits on Persistent Gravitational Waves Using LIGO S5 Science Data. Physical Review Letters, 2011, 107, 271102.	7.8	94

#	Article	IF	CITATIONS
145	AN INDIRECT SEARCH FOR WEAKLY INTERACTING MASSIVE PARTICLES IN THE SUN USING 3109.6 DAYS OF UPWARD-GOING MUONS IN SUPER-KAMIOKANDE. Astrophysical Journal, 2011, 742, 78.	4.5	150
146	A gravitational wave observatory operating beyond the quantum shot-noise limit. Nature Physics, 2011, 7, 962-965.	16.7	716
147	FIRST SEARCH FOR GRAVITATIONAL WAVES FROM THE YOUNGEST KNOWN NEUTRON STAR. Astrophysical Journal, 2010, 722, 1504-1513.	4.5	104
148	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 2010, 27, 173001.	4.0	956
149	SEARCH FOR NEUTRINOS FROM GRB 080319B AT SUPER-KAMIOKANDE. Astrophysical Journal, 2009, 697, 730-734.	4.5	8
150	SEARCH FOR ASTROPHYSICAL NEUTRINO POINT SOURCES AT SUPER-KAMIOKANDE. Astrophysical Journal, 2009, 704, 503-512.	4.5	29
151	Search for Proton Decay via <mml:math xmins:mml="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math</td"><td>7.8</td><td>109</td></mml:math>	7.8	109
152	First study of neutron tagging with a water Cherenkov detector. Astroparticle Physics, 2009, 31, 320-328.	4.3	70
153	Probing the anisotropies of a stochastic gravitational-wave background using a network of ground-based laser interferometers. Physical Review D, 2009, 80, .	4.7	88
154	Study of TeV neutrinos with upward showering muons in Super-Kamiokande. Astroparticle Physics, 2008, 29, 42-54.	4.3	50
155	Search for Supernova Neutrino Bursts at Superâ€Kamiokande. Astrophysical Journal, 2007, 669, 519-524.	4.5	138
156	Highâ€Energy Neutrino Astronomy Using Upwardâ€going Muons in Superâ€Kamiokande I. Astrophysical Journal, 2006, 652, 198-205.	4.5	22
157	Search for Diffuse Astrophysical Neutrino Flux Using Ultra–Highâ€Energy Upwardâ€going Muons in Superâ€Kamiokande I. Astrophysical Journal, 2006, 652, 206-215.	4.5	16