
Xin-Hua Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4510855/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Blocking hepatocarcinogenesis by a cytochrome P450 family member with female-preferential expression. Gut, 2022, 71, 2313-2324.	12.1	17
2	Allosteric control of Ubp6 and the proteasome via a bidirectional switch. Nature Communications, 2022, 13, 838.	12.8	15
3	Human expandable pancreatic progenitor–derived β cells ameliorate diabetes. Science Advances, 2022, 8, eabk1826.	10.3	24
4	New Chromatin Run-On Reaction Enables Global Mapping of Active RNA Polymerase Locations in an Enrichment-free Manner. ACS Chemical Biology, 2022, 17, 768-775.	3.4	3
5	A non-canonical cGAS–STING–PERK pathway facilitates the translational program critical for senescence and organ fibrosis. Nature Cell Biology, 2022, 24, 766-782.	10.3	84
6	Liver cancer heterogeneity modeled by in situ genome editing of hepatocytes. Science Advances, 2022, 8, .	10.3	15
7	To Ub or not to Ub: a regulatory question in TGF-β signaling. Trends in Biochemical Sciences, 2022, 47, 1059-1072.	7.5	18
8	The ZATT-TOP2A-PICH Axis Drives Extensive Replication Fork Reversal to Promote Genome Stability. Molecular Cell, 2021, 81, 198-211.e6.	9.7	46
9	PRMT5 Enables Robust STAT3 Activation via Arginine Symmetric Dimethylation of SMAD7. Advanced Science, 2021, 8, 2003047.	11.2	10
10	The protein phosphatase PPM1A dephosphorylates and activates YAP to govern mammalian intestinal and liver regeneration. PLoS Biology, 2021, 19, e3001122.	5.6	13
11	A subcellular map of the human kinome. ELife, 2021, 10, .	6.0	41
12	Phase separation of EML4–ALK in firing downstream signaling and promoting lung tumorigenesis. Cell Discovery, 2021, 7, 33.	6.7	34
13	A Wnt-Independent LGR4–EGFR Signaling Axis in Cancer Metastasis. Cancer Research, 2021, 81, 4441-4454.	0.9	11
14	AMBRA1 Promotes TGFÎ ² Signaling via Nonproteolytic Polyubiquitylation of Smad4. Cancer Research, 2021, 81, 5007-5020.	0.9	8
15	Induced phase separation of mutant NF2 imprisons the cGAS-STING machinery to abrogate antitumor immunity. Molecular Cell, 2021, 81, 4147-4164.e7.	9.7	51
16	Mapping messenger RNA methylations at single base resolution. Current Opinion in Chemical Biology, 2021, 63, 28-37.	6.1	17
17	Synthetic modified messenger RNA for therapeutic applications. Acta Biomaterialia, 2021, 131, 1-15.	8.3	34
18	HSPA13 facilitates NF-κB–mediated transcription and attenuates cell death responses in TNFα signaling. Science Advances, 2021, 7, eabh1756.	10.3	5

#	Article	IF	CITATIONS
19	ZNF451 stabilizes TWIST2 through SUMOylation and promotes epithelial-mesenchymal transition. American Journal of Cancer Research, 2021, 11, 898-915.	1.4	2
20	SMAD-oncoprotein interplay: Potential determining factors in targeted therapies. Biochemical Pharmacology, 2020, 180, 114155.	4.4	7
21	TBK1-Mediated DRP1 Targeting Confers Nucleic Acid Sensing to Reprogram Mitochondrial Dynamics and Physiology. Molecular Cell, 2020, 80, 810-827.e7.	9.7	35
22	A special issue on the 10-year anniversary of Life Sciences Institute, Zhejiang University. Acta Biochimica Et Biophysica Sinica, 2020, 52, 701-701.	2.0	0
23	A metabolic labeling method detects m6A transcriptome-wide at single base resolution. Nature Chemical Biology, 2020, 16, 887-895.	8.0	133
24	Transplantation Strategies for Spinal Cord Injury Based on Microenvironment Modulation. Current Stem Cell Research and Therapy, 2020, 15, 522-530.	1.3	9
25	TGF-Î ² signaling in cell fate control and cancer. Current Opinion in Cell Biology, 2019, 61, 56-63.	5.4	89
26	HER2 recruits AKT1 to disrupt STING signalling and suppress antiviral defence and antitumour immunity. Nature Cell Biology, 2019, 21, 1027-1040.	10.3	163
27	Stress-Induced Metabolic Disorder in Peripheral CD4+ T Cells Leads to Anxiety-like Behavior. Cell, 2019, 179, 864-879.e19.	28.9	180
28	ALK phosphorylates SMAD4 on tyrosine to disable TGF-β tumour suppressor functions. Nature Cell Biology, 2019, 21, 179-189.	10.3	41
29	<scp>PTPN</scp> 3 acts as a tumor suppressor and boosts <scp>TGF</scp> â€Ĥ² signaling independent of its phosphatase activity. EMBO Journal, 2019, 38, e99945.	7.8	15
30	p53 Protects Cells from Death at the Heatstroke Threshold Temperature. Cell Reports, 2019, 29, 3693-3707.e5.	6.4	8
31	Delivery of miR-212 by chimeric peptide-condensed supramolecular nanoparticles enhances the sensitivity of pancreatic ductal adenocarcinoma to doxorubicin. Biomaterials, 2019, 192, 590-600.	11.4	61
32	OTUB2 Promotes Cancer Metastasis via Hippo-Independent Activation of YAP and TAZ. Molecular Cell, 2019, 73, 7-21.e7.	9.7	112
33	miR-192-5p Silencing by Genetic Aberrations Is a Key Event in Hepatocellular Carcinomas with Cancer Stem Cell Features. Cancer Research, 2019, 79, 941-953.	0.9	65
34	USP16-mediated deubiquitination of calcineurin A controls peripheral T cell maintenance. Journal of Clinical Investigation, 2019, 129, 2856-2871.	8.2	39
35	<scp>PRDM</scp> 4 mediates <scp>YAP</scp> â€induced cell invasion by activating leukocyteâ€specific integrin β2 expression. EMBO Reports, 2018, 19, .	4.5	41
36	Small molecules promote CRISPR-Cpf1-mediated genome editing in human pluripotent stem cells. Nature Communications, 2018, 9, 1303.	12.8	52

#	Article	IF	CITATIONS
37	C-terminal domain small phosphatase-like 2 promotes epithelial-to-mesenchymal transition via Snail dephosphorylation and stabilization. Open Biology, 2018, 8, 170274.	3.6	9
38	SCP4 Promotes Gluconeogenesis Through FoxO1/3a Dephosphorylation. Diabetes, 2018, 67, 46-57.	0.6	19
39	WDR74 functions as a novel coactivator in TGF-β signaling. Journal of Genetics and Genomics, 2018, 45, 639-650.	3.9	10
40	TGF-β signaling in cancer. Acta Biochimica Et Biophysica Sinica, 2018, 50, 941-949.	2.0	49
41	HER2/EGFR–AKT Signaling Switches TGFβ from Inhibiting Cell Proliferation to Promoting Cell Migration in Breast Cancer. Cancer Research, 2018, 78, 6073-6085.	0.9	58
42	Tumor-derived exosomes promote tumor self-seeding in hepatocellular carcinoma by transferring miRNA-25-5p to enhance cell motility. Oncogene, 2018, 37, 4964-4978.	5.9	47
43	Trim33 mediates the proinflammatory function of Th17 cells. Journal of Experimental Medicine, 2018, 215, 1853-1868.	8.5	48
44	Tumor suppressor bromodomain-containing protein 7 cooperates with Smads to promote transforming growth factor-Î ² responses. Oncogene, 2017, 36, 362-372.	5.9	19
45	Single tumor-initiating cells evade immune clearance by recruiting type II macrophages. Genes and Development, 2017, 31, 247-259.	5.9	207
46	The lysine methyltransferase SMYD2 methylates the kinase domain of type II receptor BMPR2 and stimulates bone morphogenetic protein signaling. Journal of Biological Chemistry, 2017, 292, 12702-12712.	3.4	25
47	Lck/Hck/Fgr-Mediated Tyrosine Phosphorylation Negatively Regulates TBK1 to Restrain Innate Antiviral Responses. Cell Host and Microbe, 2017, 21, 754-768.e5.	11.0	29
48	Hippo signalling governs cytosolic nucleic acid sensing through YAP/TAZ-mediated TBK1 blockade. Nature Cell Biology, 2017, 19, 362-374.	10.3	153
49	AUNIP/C1orf135 directs DNA double-strand breaks towards the homologous recombination repair pathway. Nature Communications, 2017, 8, 985.	12.8	34
50	Smad7 enables STAT3 activation and promotes pluripotency independent of TGF-Î ² signaling. Proceedings of the United States of America, 2017, 114, 10113-10118.	7.1	48
51	Src Inhibits the Hippo Tumor Suppressor Pathway through Tyrosine Phosphorylation of Lats1. Cancer Research, 2017, 77, 4868-4880.	0.9	116
52	Myokine mediated muscle-kidney crosstalk suppresses metabolic reprogramming and fibrosis in damaged kidneys. Nature Communications, 2017, 8, 1493.	12.8	117
53	Mitochondrial dynamics controls anti-tumour innate immunity by regulating CHIP-IRF1 axis stability. Nature Communications, 2017, 8, 1805.	12.8	97
54	Phosphatase UBLCP1 controls proteasome assembly. Open Biology, 2017, 7, 170042.	3.6	18

#	Article	IF	CITATIONS
55	Palmitoylated SCP1 is targeted to the plasma membrane and negatively regulates angiogenesis. ELife, 2017, 6, .	6.0	15
56	FoxO3 inactivation promotes human cholangiocarcinoma tumorigenesis and chemoresistance through Keap1â€Nrf2 signaling. Hepatology, 2016, 63, 1914-1927.	7.3	81
57	<scp>SLFN</scp> 11 inhibits checkpoint maintenance and homologous recombination repair. EMBO Reports, 2016, 17, 94-109.	4.5	116
58	The Small C-terminal Domain Phosphatase 1 Inhibits Cancer Cell Migration and Invasion by Dephosphorylating Ser(P)68-Twist1 to Accelerate Twist1 Protein Degradation. Journal of Biological Chemistry, 2016, 291, 11518-11528.	3.4	25
59	Mst1 shuts off cytosolic antiviral defense through IRF3 phosphorylation. Genes and Development, 2016, 30, 1086-1100.	5.9	68
60	SUMO Modification Reverses Inhibitory Effects of Smad Nuclear Interacting Protein-1 in TGF-Î ² Responses. Journal of Biological Chemistry, 2016, 291, 24418-24430.	3.4	25
61	Regulation of Multi-drug Resistance in hepatocellular carcinoma cells is TRPC6/Calcium Dependent. Scientific Reports, 2016, 6, 23269.	3.3	90
62	G protein-coupled estrogen receptor deficiency accelerates liver tumorigenesis by enhancing inflammation and fibrosis. Cancer Letters, 2016, 382, 195-202.	7.2	47
63	Posttranslational Regulation of Smads. Cold Spring Harbor Perspectives in Biology, 2016, 8, a022087.	5.5	73
64	PPM1A silences cytosolic RNA sensing and antiviral defense through direct dephosphorylation of MAVS and TBK1. Science Advances, 2016, 2, e1501889.	10.3	55
65	Loss of α-Tubulin Acetylation Is Associated with TGF-β-induced Epithelial-Mesenchymal Transition. Journal of Biological Chemistry, 2016, 291, 5396-5405.	3.4	85
66	Smad7 Protein Interacts with Receptor-regulated Smads (R-Smads) to Inhibit Transforming Growth Factor-β (TGF-β)/Smad Signaling. Journal of Biological Chemistry, 2016, 291, 382-392.	3.4	144
67	Salinomycin decreases doxorubicin resistance in hepatocellular carcinoma cells by inhibiting the β-catenin/TCF complex association via FOXO3a activation. Oncotarget, 2015, 6, 10350-10365.	1.8	84
68	Inhibition of mTORC2 Induces Cell-Cycle Arrest and Enhances the Cytotoxicity of Doxorubicin by Suppressing MDR1 Expression in HCC Cells. Molecular Cancer Therapeutics, 2015, 14, 1805-1815.	4.1	36
69	Nuclear Export of Smads by RanBP3L Regulates Bone Morphogenetic Protein Signaling and Mesenchymal Stem Cell Differentiation. Molecular and Cellular Biology, 2015, 35, 1700-1711.	2.3	37
70	Actl6a Protects Embryonic Stem Cells From Differentiating Into Primitive Endoderm. Stem Cells, 2015, 33, 1782-1793.	3.2	35
71	Ppm1b negatively regulates necroptosis through dephosphorylating Rip3. Nature Cell Biology, 2015, 17, 434-444.	10.3	128
72	Zinc Finger Protein 451 Is a Novel Smad Corepressor in Transforming Growth Factor-β Signaling. Journal of Biological Chemistry, 2014, 289, 2072-2083.	3.4	27

#	Article	IF	CITATIONS
73	SCP Phosphatases Suppress Renal Cell Carcinoma by Stabilizing PML and Inhibiting mTOR/HIF Signaling. Cancer Research, 2014, 74, 6935-6946.	0.9	29
74	Specific control of BMP signaling and mesenchymal differentiation by cytoplasmic phosphatase PPM1H. Cell Research, 2014, 24, 727-741.	12.0	29
75	C-terminal Domain (CTD) Small Phosphatase-like 2 Modulates the Canonical Bone Morphogenetic Protein (BMP) Signaling and Mesenchymal Differentiation via Smad Dephosphorylation. Journal of Biological Chemistry, 2014, 289, 26441-26450.	3.4	32
76	Smad3 signaling activates bone marrow-derived fibroblasts in renal fibrosis. Laboratory Investigation, 2014, 94, 545-556.	3.7	35
77	The changing faces of cancer cells. Nature Reviews Molecular Cell Biology, 2010, 11, 466-466.	37.0	4
78	PPB is a Novel Serine/Threonine Phosphatase of Akt and is Involved in Myogenesis. FASEB Journal, 2010, 24, 863.2.	0.5	0
79	Nuclear Export of Smad2 and Smad3 by RanBP3 Facilitates Termination of TGF-β Signaling. Developmental Cell, 2009, 16, 345-357.	7.0	89
80	To (TGF)β or not to (TGF)β: Fine-tuning of Smad signaling via post-translational modifications. Cellular Signalling, 2008, 20, 1579-1591.	3.6	45
81	Critical regulation of TGFÎ ² signaling by Hsp90. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9244-9249.	7.1	112
82	Abstract 4275: TGFBR2 Mutations Reduce Expression of Contractile Proteins in Aortic Smooth Muscle Cells and Predispose Individuals to Thoracic Aortic Aneurysms and Dissections. Circulation, 2008, 118,	1.6	0
83	Smad7 Antagonizes Transforming Growth Factor \hat{I}^2 Signaling in the Nucleus by Interfering with Functional Smad-DNA Complex Formation. Molecular and Cellular Biology, 2007, 27, 4488-4499.	2.3	220
84	Termination of TGF-β Superfamily Signaling Through SMAD Dephosphorylation—A Functional Genomic View. Journal of Genetics and Genomics, 2007, 34, 1-9.	3.9	13
85	PPM1A Functions as a Smad Phosphatase to Terminate TGFÎ ² Signaling. Cell, 2006, 125, 915-928.	28.9	422
86	Small C-terminal Domain Phosphatases Dephosphorylate the Regulatory Linker Regions of Smad2 and Smad3 to Enhance Transforming Growth Factor-β Signaling*. Journal of Biological Chemistry, 2006, 281, 38365-38375.	3.4	90
87	Protein Serine/Threonine Phosphatase PPM1A Dephosphorylates Smad1 in the Bone Morphogenetic Protein Signaling Pathway*. Journal of Biological Chemistry, 2006, 281, 36526-36532.	3.4	90
88	SPECIFICITY AND VERSATILITY IN TGF-Î ² SIGNALING THROUGH SMADS. Annual Review of Cell and Developmental Biology, 2005, 21, 659-693.	9.4	1,670
89	Ubiquitination and Proteolysis of Cancer-Derived Smad4 Mutants by SCF Skp2. Molecular and Cellular Biology, 2004, 24, 7524-7537.	2.3	79
90	Activation of Transforming Growth Factor-β Signaling by SUMO-1 Modification of Tumor Suppressor Smad4/DPC4. Journal of Biological Chemistry, 2003, 278, 18714-18719.	3.4	121

#	Article	IF	CITATIONS
91	Smad6 Recruits Transcription Corepressor CtBP To Repress Bone Morphogenetic Protein-Induced Transcription. Molecular and Cellular Biology, 2003, 23, 9081-9093.	2.3	100
92	Direct Interaction of c-Myc with Smad2 and Smad3 to Inhibit TGF-β-Mediated Induction of the CDK Inhibitor p15Ink4B. Molecular Cell, 2002, 9, 133-143.	9.7	203
93	Smurf2 Is a Ubiquitin E3 Ligase Mediating Proteasome-dependent Degradation of Smad2 in Transforming Growth Factor-β Signaling. Journal of Biological Chemistry, 2000, 275, 36818-36822.	3.4	431
94	The Type II Transforming Growth Factor-β Receptor Autophosphorylates Not Only on Serine and Threonine but Also on Tyrosine Residues. Journal of Biological Chemistry, 1997, 272, 14850-14859.	3.4	107
95	Ligand-independent Activation of Transforming Growth Factor (TGF) Î ² Signaling Pathways by Heteromeric Cytoplasmic Domains of TGF-Î ² Receptors. Journal of Biological Chemistry, 1996, 271, 13123-13129.	3.4	94