
Cristina Martinez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4509403/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Career in Catalysis: Avelino Corma. ACS Catalysis, 2022, 12, 7054-7123.	11.2	14
2	Influence of boron promotion on the physico-chemical properties and catalytic behavior of Zn/ZSM-5 in the aromatization of n-hexane. Catalysis Today, 2021, 366, 97-102.	4.4	16
3	Activation and conversion of alkanes in the confined space of zeolite-type materials. Chemical Society Reviews, 2021, 50, 8511-8595.	38.1	87
4	Influence of Preparation Conditions on the Catalytic Performance of Mo/H-ZSM-5 for Methane Dehydroaromatization. Applied Sciences (Switzerland), 2021, 11, 5465.	2.5	4
5	Propene Production by Butene Cracking. Descriptors for Zeolite Catalysts. ACS Catalysis, 2020, 10, 11878-11891.	11.2	31
6	CO ₂ hydrogenation using bifunctional catalysts based on K-promoted iron oxide and zeolite: influence of the zeolite structure and crystal size. Catalysis Science and Technology, 2020, 10, 5648-5658.	4.1	15
7	Ge-Based Hybrid Composites from Ge-Rich Zeolites as Highly Conductive and Stable Electronic Materials. Chemistry of Materials, 2019, 31, 7723-7731.	6.7	3
8	Control of the Reaction Mechanism of Alkylaromatics Transalkylation by Means of Molecular Confinement Effects Associated to Zeolite Channel Architecture. ACS Catalysis, 2019, 9, 5935-5946.	11.2	29
9	One-pot co-crystallization of beta and pentasil nanozeolites for the direct conversion of a heavy reformate fraction into xylenes. Applied Catalysis A: General, 2019, 581, 11-22.	4.3	12
10	Direct Synthesis of Nanoâ€Ferrierite along the 10â€Ring hannel Direction Boosts Their Catalytic Behavior. Angewandte Chemie - International Edition, 2018, 57, 3459-3463.	13.8	46
11	Direct Synthesis of Nanoâ€Ferrierite along the 10â€Ringâ€Channel Direction Boosts Their Catalytic Behavior. Angewandte Chemie, 2018, 130, 3517-3521.	2.0	9
12	Increasing the stability of the Ge-containing extra-large pore ITQ-33 zeolite by post-synthetic acid treatments. Microporous and Mesoporous Materials, 2018, 267, 35-42.	4.4	18
13	ZSM-5/SBA-15 versus Al-SBA-15 as supports for the hydrocracking/hydroisomerization of alkanes. Catalysis Today, 2018, 306, 121-127.	4.4	21
14	Nanosized MCM-22 zeolite using simple non-surfactant organic growth modifiers: synthesis and catalytic applications. Chemical Communications, 2018, 54, 9989-9992.	4.1	14
15	Simple organic structure directing agents for synthesizing nanocrystalline zeolites. Chemical Science, 2017, 8, 8138-8149.	7.4	38
16	Efficient Oligomerization of Pentene into Liquid Fuels on Nanocrystalline Beta Zeolites. ACS Catalysis, 2017, 7, 6170-6178.	11.2	43
17	ITQ-39 zeolite, an efficient catalyst for the conversion of low value naphtha fractions into diesel fuel: The role of pore size on molecular diffusion and reactivity. Journal of Catalysis, 2016, 333, 127-138.	6.2	10
18	Influencing the activity and selectivity of alkylaromatic catalytic transformations by varying the degree of delamination in MWW zeolites. Catalysis Science and Technology, 2016, 6, 3166-3181.	4.1	18

CRISTINA MARTINEZ

#	Article	IF	CITATIONS
19	High-silica nanocrystalline Beta zeolites: efficient synthesis and catalytic application. Chemical Science, 2016, 7, 102-108.	7.4	82
20	One-pot synthesis of nano-crystalline MCM-22. Microporous and Mesoporous Materials, 2016, 220, 28-38.	4.4	36
21	Direct Dualâ€Template Synthesis of MWW Zeolite Monolayers. Angewandte Chemie - International Edition, 2015, 54, 13724-13728.	13.8	77
22	Multipore Zeolites: Synthesis and Catalytic Applications. Angewandte Chemie - International Edition, 2015, 54, 3560-3579.	13.8	296
23	Non-oxidative dehydroaromatization of methane: an effective reaction–regeneration cyclic operation for catalyst life extension. Catalysis Science and Technology, 2015, 5, 3806-3821.	4.1	55
24	Improved THETA-1 for Light Olefins Oligomerization to Diesel: Influence of Textural and Acidic Properties. Topics in Catalysis, 2014, 57, 668-682.	2.8	29
25	Synthesis Strategies for Preparing Useful Small Pore Zeolites and Zeotypes for Gas Separations and Catalysis. Chemistry of Materials, 2014, 26, 246-258.	6.7	267
26	Zeolites. , 2013, , 103-131.		11
27	Stabilized hierarchical USY zeolite catalysts for simultaneous increase in diesel and LPG olefinicity during catalytic cracking. Catalysis Science and Technology, 2013, 3, 972. Designing MFI-based catalysts with improved catalyst life for <mml:math< td=""><td>4.1</td><td>64</td></mml:math<>	4.1	64
28	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"> <mml:mrow><mml:msubsup><mml:mrow><mml:mtext>C</mml:mtext></mml:mrow><mml:r width="0.35em" /><mml:mtext>and</mml:mtext><mml:mspace <br="" width="0.35em">/><mml:msubsup><mml:mrow><mml:mtext>C</mml:mtext></mml:mrow><mml:mrow><mml:mn>5</mml:mn></mml:mrow></mml:msubsup></mml:mspace></mml:r </mml:msubsup></mml:mrow>	0.2	00
29	Journal of Catalysis, 2013, 300, 183-196. Structure and catalytic properties of the most complex intergrown zeolite ITQ-39 determined by electron crystallography. Nature Chemistry, 2012, 4, 188-194.	13.6	178
30	Mechanistic differences between methanol and dimethyl ether carbonylation in side pockets and large channels of mordenite. Physical Chemistry Chemical Physics, 2011, 13, 2603.	2.8	151
31	Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coordination Chemistry Reviews, 2011, 255, 1558-1580.	18.8	583
32	Structure-reactivity relationship for aromatics transalkylation and isomerization process with TNU-9, MCM-22 and ZSM-5 zeolites, and their industrial implications. Applied Catalysis A: General, 2011, 393, 257-268.	4.3	31
33	Influence of layer structure preservation on the catalytic properties of the pillared zeolite MCM-36. Journal of Catalysis, 2010, 272, 298-308.	6.2	72
34	Methanolysis of sunflower oil using gem-diamines as active organocatalysts for biodiesel production. Applied Catalysis A: General, 2010, 382, 36-42.	4.3	10
35	The benefit of multipore zeolites: Catalytic behaviour of zeolites with intersecting channels of different sizes for alkylation reactions. Journal of Catalysis, 2009, 268, 9-17.	6.2	54
36	Synthesis methodology, stability, acidity, and catalytic behavior of the 18×1018×10 member ring pores ITQ-33 zeolite. Journal of Catalysis, 2008, 254, 101-109.	6.2	78

CRISTINA MARTINEZ

#	Article	IF	CITATIONS
37	Synthesis methodology, acidity and catalytic behaviour of the 18 × 10 member ring pores ITQ-33 zeolite. Studies in Surface Science and Catalysis, 2008, 174, 155-160.	1.5	2
38	Zeolite ITQ-21 as catalyst for the alkylation of benzene with propylene. Studies in Surface Science and Catalysis, 2008, , 1087-1090.	1.5	5
39	Enzyme-like Specificity in Zeolites: A Unique Site Position in Mordenite for Selective Carbonylation of Methanol and Dimethyl Ether with CO. Journal of the American Chemical Society, 2008, 130, 16316-16323.	13.7	266
40	Discovery of a new catalytically active and selective zeolite (ITQ-30) by high-throughput synthesis techniques. Studies in Surface Science and Catalysis, 2007, , 322-329.	1.5	1
41	New materials as FCC active matrix components for maximizing diesel (light cycle oil, LCO) and minimizing its aromatic content. Catalysis Today, 2007, 127, 3-16.	4.4	46
42	High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature, 2006, 443, 842-845.	27.8	473
43	Discovery of a new catalytically active and selective zeolite (ITQ-30) by high-throughput synthesis techniques. Journal of Catalysis, 2006, 241, 312-318.	6.2	67
44	A fluoride-catalyzed sol–gel route to catalytically active non-ordered mesoporous silica materials in the absence of surfactants. Journal of Materials Chemistry, 2005, 15, 1742.	6.7	39
45	Synthesis and catalytic properties of thermally and hydrothermally stable, high-surface-area SiO2–CeO2 mesostructured composite materials and their application for the removal of sulfur compounds from gasoline. Journal of Catalysis, 2004, 224, 441-448.	6.2	30
46	Dilution effect of the feed on yield of olefins during catalytic cracking of vacuum gas oil. Applied Catalysis A: General, 2002, 230, 111-125.	4.3	24
47	A new continuous laboratory reactor for the study of catalytic cracking. Applied Catalysis A: General, 2002, 232, 247-263.	4.3	33
48	On the mechanism of sulfur removal during catalytic cracking. Applied Catalysis A: General, 2001, 208, 135-152.	4.3	82
49	The Use of ITQ-7 as a FCC Zeolitic Additive. Journal of Catalysis, 2001, 197, 151-159.	6.2	50
50	Superparamagnetic particles in ZSM-5–type ferrisilicates. Journal of Materials Research, 1997, 12, 1519-1529.	2.6	25
51	Iron oxide particles in large pore zeolites. Journal of Magnetism and Magnetic Materials, 1996, 157-158, 272-273.	2.3	22
52	Acidic Cs+, NH4+, and K+Salts of 12-Tungstophosphoric Acid as Solid Catalysts for Isobutane/2-butene Alkylation. Journal of Catalysis, 1996, 164, 422-432.	6.2	132
53	The role of extraframework aluminum species in USY catalysts during isobutane/2-butene alkylation. Applied Catalysis A: General, 1996, 134, 169-182.	4.3	59
54	The effect of sulfation conditions and activation temperature of sulfate-doped ZrO2, TiO2 and SnO2 catalysts during isobutane/2-butene alkylation. Applied Catalysis A: General, 1996, 144, 249-268.	4.3	70

#	Article	IF	CITATIONS
55	Zeolite supported magnetic clusters. Journal of Magnetism and Magnetic Materials, 1995, 140-144, 363-364.	2.3	13
56	A comparative study of O42â^' ZrO2 and zeolite beta as catalysts for the isomerization of n-butane and the alkylation of isobutane with 2-butene. Applied Catalysis A: General, 1994, 111, 175-189.	4.3	110
57	Influence of Process Variables on the Continuous Alkylation of Isobutane with 2-Butene on Superacid Sulfated Zirconia Catalysts. Journal of Catalysis, 1994, 149, 52-60.	6.2	108
58	Isobutane/2-butene alkylation on MCM-22 catalyst. Influence of zeolite structure and acidity on activity and selectivity. Catalysis Letters, 1994, 28, 187-201.	2.6	77
59	Isobutane/2-butene alkylation on ultrastable Y zeolites: Influence of zeolite unit cell size. Journal of Catalysis, 1994, 146, 185-192.	6.2	120