
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/450938/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microfluidic Arrays of Breast Tumor Spheroids for Drug Screening and Personalized Cancer Therapies. Advanced Healthcare Materials, 2022, 11, e2101085.	3.9	48
2	Stimulus-Responsive Nanoconjugates Derived from Phytoglycogen Nanoparticles. Biomacromolecules, 2022, 23, 1928-1937.	2.6	6
3	Biomimetic hydrogel supports initiation and growth of patient-derived breast tumor organoids. Nature Communications, 2022, 13, 1466.	5.8	48
4	Nanostructured Temperature Indicator for Cold Chain Logistics. ACS Nano, 2022, 16, 8641-8650.	7.3	17
5	A 3D printing approach to intelligent food packaging. Trends in Food Science and Technology, 2022, 127, 87-98.	7.8	20
6	Trends in Droplet Microfluidics: From Droplet Generation to Biomedical Applications. Langmuir, 2022, 38, 6233-6248.	1.6	30
7	Polymer-Tethered Nanoparticles: From Surface Engineering to Directional Self-Assembly. Accounts of Chemical Research, 2022, 55, 1503-1513.	7.6	23
8	Oxidative Elimination and Reductive Addition of Thiolâ€Terminated Polymer Ligands to Metal Nanoparticles. Angewandte Chemie - International Edition, 2022, 61, .	7.2	8
9	Matrix Stiffness-Regulated Growth of Breast Tumor Spheroids and Their Response to Chemotherapy. Biomacromolecules, 2021, 22, 419-429.	2.6	36
10	Actuation of Threeâ€Dimensionalâ€Printed Nanocolloidal Hydrogel with Structural Anisotropy. Advanced Functional Materials, 2021, 31, 2010743.	7.8	59
11	Nanofibrillar Hydrogel Recapitulates Changes Occurring in the Fibrotic Extracellular Matrix. Biomacromolecules, 2021, 22, 2352-2362.	2.6	17
12	Microdroplet-based one-step RT-PCR for ultrahigh throughput single-cell multiplex gene expression analysis and rare cell detection. Scientific Reports, 2021, 11, 6777.	1.6	15
13	Self-organization of nanoparticles and molecules in periodic Liesegang-type structures. Science Advances, 2021, 7, .	4.7	16
14	Phytoglycogen Nanoparticles: Nature-Derived Superlubricants. ACS Nano, 2021, 15, 8953-8964.	7.3	9
15	Multifunctional 3D-Printed Wound Dressings. ACS Nano, 2021, 15, 12375-12387.	7.3	104
16	Cylindrical Confinement of Nanocolloidal Cholesteric Liquid Crystal. Journal of Physical Chemistry B, 2021, 125, 8243-8250.	1.2	9
17	Nanoparticle synthesis assisted by machine learning. Nature Reviews Materials, 2021, 6, 701-716.	23.3	179
18	Resilient Women and the Resiliency of Science. Chemistry of Materials, 2021, 33, 6585-6588.	3.2	3

2

#	Article	IF	CITATIONS
19	Selfâ€Driving Platform for Metal Nanoparticle Synthesis: Combining Microfluidics and Machine Learning. Advanced Functional Materials, 2021, 31, 2106725.	7.8	57
20	Multicolored Nanocolloidal Hydrogel Inks. Advanced Functional Materials, 2021, 31, 2105470.	7.8	9
21	Microfluidic arrays of dermal spheroids: a screening platform for active ingredients of skincare products. Lab on A Chip, 2021, 21, 3952-3962.	3.1	15
22	Structurally anisotropic hydrogels for tissue engineering. Trends in Chemistry, 2021, 3, 1002-1026.	4.4	28
23	Composite Microgels for Imaging-Monitored Tracking of the Delivery of Vascular Endothelial Growth Factor to Ischemic Muscles. Biomacromolecules, 2021, , .	2.6	4
24	Computational Modelling and Big Data Analysis of Flow and Drug Transport in Microfluidic Systems: A Spheroid-on-a-Chip Study. Frontiers in Bioengineering and Biotechnology, 2021, 9, 781566.	2.0	8
25	Chiral Carbon Dots Synthesized on Cellulose Nanocrystals. Advanced Optical Materials, 2020, 8, 1901911.	3.6	61
26	Nanocolloidal Hydrogel with Sensing and Antibacterial Activities Governed by Iron Ion Sequestration. Chemistry of Materials, 2020, 32, 10066-10075.	3.2	32
27	Self-limiting directional nanoparticle bonding governed by reaction stoichiometry. Science, 2020, 369, 1369-1374.	6.0	139
28	Colloidal stability of nanoparticles stabilized with mixed ligands in solvents with varying polarity. Chemical Communications, 2020, 56, 8131-8134.	2.2	20
29	Morphological Transitions in Patchy Nanoparticles. ACS Nano, 2020, 14, 4577-4584.	7.3	19
30	Carbon Dots Conjugated with Vascular Endothelial Growth Factor for Protein Tracking in Angiogenic Therapy. Langmuir, 2020, 36, 2893-2900.	1.6	24
31	Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nature Nanotechnology, 2020, 15, 668-674.	15.6	541
32	Solvent-Mediated Isolation of Polymer-Grafted Nanoparticles. Macromolecules, 2020, 53, 4533-4540.	2.2	0
33	Helicoidal Patterning of Gold Nanorods by Phase Separation in Mixed Polymer Brushes. Langmuir, 2019, 35, 15872-15879.	1.6	17
34	Nanoparticle-laden droplets of liquid crystals: Interactive morphogenesis and dynamic assembly. Science Advances, 2019, 5, eaav1035.	4.7	19
35	Hybrid Cholesteric Films with Tailored Polarization Rotation. Advanced Functional Materials, 2019, 29, 1905552.	7.8	11
36	Staged Surface Patterning and Selfâ€Assembly of Nanoparticles Functionalized with Endâ€Grafted Block Copolymer Ligands. Angewandte Chemie, 2019, 131, 9370-9375.	1.6	2

#	Article	IF	CITATIONS
37	Helicoidal Patterning of Nanorods with Polymer Ligands. Angewandte Chemie, 2019, 131, 3155-3159.	1.6	2
38	Polyelectrolyte vs Polyampholyte Behavior of Composite Chitosan/Gelatin Films. ACS Omega, 2019, 4, 8795-8803.	1.6	10
39	Staged Surface Patterning and Selfâ€Assembly of Nanoparticles Functionalized with Endâ€Grafted Block Copolymer Ligands. Angewandte Chemie - International Edition, 2019, 58, 9269-9274.	7.2	41
40	Dynamic fibroblast contractions attract remote macrophages in fibrillar collagen matrix. Nature Communications, 2019, 10, 1850.	5.8	167
41	Temperatureâ€Mediated Microfluidic Extrusion of Structurally Anisotropic Hydrogels. Advanced Materials Technologies, 2019, 4, 1800627.	3.0	18
42	Helicoidal Patterning of Nanorods with Polymer Ligands. Angewandte Chemie - International Edition, 2019, 58, 3123-3127.	7.2	32
43	Design and applications of man-made biomimetic fibrillar hydrogels. Nature Reviews Materials, 2019, 4, 99-115.	23.3	253
44	Patterning of Structurally Anisotropic Composite Hydrogel Sheets. Biomacromolecules, 2018, 19, 1276-1284.	2.6	62
45	Silverâ€Assisted Synthesis of Gold Nanorods: the Relation between Silver Additive and Iodide Impurities. Small, 2018, 14, e1703879.	5.2	30
46	Hydrogel microenvironments for cancer spheroid growth and drug screening. Science Advances, 2018, 4, eaas8998.	4.7	238
47	Shear-Induced Alignment of Anisotropic Nanoparticles in a Single-Droplet Oscillatory Microfluidic Platform. Langmuir, 2018, 34, 322-330.	1.6	32
48	Selfâ€Assembly and Surface Patterning of Polyferrocenylsilaneâ€Functionalized Gold Nanoparticles. Macromolecular Rapid Communications, 2018, 39, 1700554.	2.0	16
49	Compound droplets derived from a cholesteric suspension of cellulose nanocrystals. Soft Matter, 2018, 14, 9713-9719.	1.2	14
50	Selfâ€Assembly of Cellulose Nanocrystals into Semiâ€ S pherical Photonic Cholesteric Films. Advanced Functional Materials, 2018, 28, 1803852.	7.8	35
51	Temperature-Responsive Self-Assembly of Nanoparticles Grafted with UCST Polymer Ligands. Macromolecules, 2018, 51, 6021-6027.	2.2	28
52	Nanocolloidal Hydrogel for Heavy Metal Scavenging. ACS Nano, 2018, 12, 8160-8168.	7.3	90
53	3Dâ€Printed Microfluidic Devices for Materials Science. Advanced Materials Technologies, 2018, 3, 1800068.	3.0	33
54	Thermoplastic microfluidic devices for targeted chemical and biological applications. RSC Advances, 2017, 7, 2884-2889.	1.7	27

#	Article	IF	CITATIONS
55	Quantifying the efficiency of CO ₂ capture by Lewis pairs. Chemical Science, 2017, 8, 3270-3275.	3.7	36
56	Periodic assembly of nanoparticle arrays in disclinations of cholesteric liquid crystals. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2137-2142.	3.3	59
57	Enhanced electrocatalytic performance of palladium nanoparticles with high energy surfaces in formic acid oxidation. Journal of Materials Chemistry A, 2017, 5, 11582-11585.	5.2	58
58	Shape-Specific Patterning of Polymer-Functionalized Nanoparticles. ACS Nano, 2017, 11, 4995-5002.	7.3	63
59	Supramolecular Nanofibrillar Thermoreversible Hydrogel for Growth and Release of Cancer Spheroids. Angewandte Chemie - International Edition, 2017, 56, 6083-6087.	7.2	66
60	Nanorattles with tailored electric field enhancement. Nanoscale, 2017, 9, 9376-9385.	2.8	76
61	Study of Extraction and Recycling of Switchable Hydrophilicity Solvents in an Oscillatory Microfluidic Platform. ACS Sustainable Chemistry and Engineering, 2017, 5, 4304-4310.	3.2	18
62	Supramolecular Nanofibrillar Thermoreversible Hydrogel for Growth and Release of Cancer Spheroids. Angewandte Chemie, 2017, 129, 6179-6183.	1.6	11
63	Composite Cholesteric Nanocellulose Films with Enhanced Mechanical Properties. Chemistry of Materials, 2017, 29, 789-795.	3.2	64
64	Injectable Shear-Thinning Fluorescent Hydrogel Formed by Cellulose Nanocrystals and Graphene Quantum Dots. Langmuir, 2017, 33, 12344-12350.	1.6	90
65	No need to wait. Nature Materials, 2017, 16, 883-884.	13.3	2
66	An exploration of the reflow technique for the fabrication of an in vitro microvascular system to study occlusive clots. Biomedical Microdevices, 2017, 19, 82.	1.4	5
67	From Structure to Properties of Composite Films Derived from Cellulose Nanocrystals. ACS Omega, 2017, 2, 5928-5934.	1.6	26
68	Homopolymer Nanolithography. Small, 2017, 13, 1702043.	5.2	13
69	Microfluidic Studies of Polymer Adsorption in Flow. Macromolecular Chemistry and Physics, 2017, 218, 1600328.	1.1	3
70	One-Step Fabrication of Microchannels with Integrated Three Dimensional Features by Hot Intrusion Embossing. Sensors, 2016, 16, 2023.	2.1	11
71	Assembly of Gold Nanoparticles on Gold Nanorods Using Functionalized Poly(<i>N</i> -isopropylacrylamide) as Polymeric "Glue― Particle and Particle Systems Characterization, 2016, 33, 698-702.	1.2	17
72	Two-dimensional arrays of cell-laden polymer hydrogel modules. Biomicrofluidics, 2016, 10, 014110.	1.2	12

#	Article	IF	CITATIONS
73	Composite Hydrogels with Tunable Anisotropic Morphologies and Mechanical Properties. Chemistry of Materials, 2016, 28, 3406-3415.	3.2	206
74	Linear assembly of patchy and non-patchy nanoparticles. Faraday Discussions, 2016, 191, 189-204.	1.6	26
75	Toward rational design of palladium nanoparticles with plasmonically enhanced catalytic performance. RSC Advances, 2016, 6, 47907-47911.	1.7	7
76	Large-Scale Synthesis of Metal Nanocrystals in Aqueous Suspensions. Chemistry of Materials, 2016, 28, 3196-3202.	3.2	37
77	Nanofibrillar Stimulusâ€Responsive Cholesteric Microgels with Catalytic Properties. Angewandte Chemie - International Edition, 2016, 55, 14014-14018.	7.2	35
78	Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature, 2016, 537, 382-386.	13.7	1,429
79	Surface patterning of nanoparticles with polymer patches. Nature, 2016, 538, 79-83.	13.7	257
80	Temperature-Responsive Nanofibrillar Hydrogels for Cell Encapsulation. Biomacromolecules, 2016, 17, 3244-3251.	2.6	64
81	Nanofibrillar Stimulusâ€Responsive Cholesteric Microgels with Catalytic Properties. Angewandte Chemie, 2016, 128, 14220-14224.	1.6	9
82	Colloidal cholesteric liquid crystal in spherical confinement. Nature Communications, 2016, 7, 12520.	5.8	157
83	Rational Design of Efficient Palladium Catalysts for Electroreduction of Carbon Dioxide to Formate. ACS Catalysis, 2016, 6, 8115-8120.	5.5	277
84	Shape-Dependent Interactions of Palladium Nanocrystals with Hydrogen. Small, 2016, 12, 2450-2458.	5.2	34
85	A microfluidic study of liquid–liquid extraction mediated by carbon dioxide. Lab on A Chip, 2016, 16, 2710-2718.	3.1	17
86	Template-assisted colloidal self-assembly of macroscopic magnetic metasurfaces. Faraday Discussions, 2016, 191, 159-176.	1.6	51
87	Fabrication and optical enhancing properties of discrete supercrystals. Nanoscale, 2016, 8, 12702-12709.	2.8	17
88	Universal behavior of hydrogels confined to narrow capillaries. Scientific Reports, 2015, 5, 17017.	1.6	36
89	An Exploratory Microfluidic Approach to Photopolymerized Polymerâ€Inorganic Nanocomposite Films. Macromolecular Materials and Engineering, 2015, 300, 1071-1078.	1.7	1
90	Microfluidic Separation of Ethylene and Ethane Using Frustrated Lewis Pairs. ChemSusChem, 2015, 8, 4202-4208.	3.6	7

#	Article	IF	CITATIONS
91	Coassembly of Nanorods and Nanospheres in Suspensions and in Stratified Films. Angewandte Chemie - International Edition, 2015, 54, 5618-5622.	7.2	53
92	Colloidal approach of local and propagating magnetic modes for optical metamaterials on the macroscopic area. , 2015, , .		1
93	Colloidally Stable and Surfactant-Free Protein-Coated Gold Nanorods in Biological Media. ACS Applied Materials & Interfaces, 2015, 7, 5984-5991.	4.0	156
94	Structure and properties of composite films formed by cellulose nanocrystals and charged latex nanoparticles. Nanoscale, 2015, 7, 6612-6618.	2.8	44
95	Ion-Mediated Gelation of Aqueous Suspensions of Cellulose Nanocrystals. Biomacromolecules, 2015, 16, 2455-2462.	2.6	173
96	Field-assisted self-assembly process: general discussion. Faraday Discussions, 2015, 181, 463-479.	1.6	1
97	New routes to control nanoparticle synthesis: general discussion. Faraday Discussions, 2015, 181, 147-179.	1.6	2
98	Controlled Living Nanowire Growth: Precise Control over the Morphology and Optical Properties of AgAuAg Bimetallic Nanowires. Nano Letters, 2015, 15, 5427-5437.	4.5	122
99	Silver-Overgrowth-Induced Changes in Intrinsic Optical Properties of Gold Nanorods: From Noninvasive Monitoring of Growth Kinetics to Tailoring Internal Mirror Charges. Journal of Physical Chemistry C, 2015, 119, 9513-9523.	1.5	53
100	Reversible gold nanorod alignment in mechano-responsive elastomers. Polymer, 2015, 66, 167-172.	1.8	17
101	Shape transformations of soft matter governed by bi-axial stresses. Soft Matter, 2015, 11, 4600-4605.	1.2	37
102	Coassembly of Gold Nanoparticles and Cellulose Nanocrystals in Composite Films. Langmuir, 2015, 31, 5033-5041.	1.6	61
103	Properties of self-assembled nanostructures: general discussion. Faraday Discussions, 2015, 181, 365-381.	1.6	Ο
104	Peclet Number Dependence of Mass Transfer in Microscale Segmented Gas–Liquid Flow. Industrial & Engineering Chemistry Research, 2015, 54, 9046-9051.	1.8	25
105	Hierarchical line-defect patterns in wrinkled surfaces. Soft Matter, 2015, 11, 3332-3339.	1.2	46
106	Circular Dichroism of Chiral Nematic Films of Cellulose Nanocrystals Loaded with Plasmonic Nanoparticles. ACS Nano, 2015, 9, 10377-10385.	7.3	111
107	Optically anisotropic substrates via wrinkle-assisted convective assembly of gold nanorods on macroscopic areas. Faraday Discussions, 2015, 181, 243-260.	1.6	62
	Hierarchical Materials: SERS Platforms of Plasmonic Hydrophobic Surfaces for Analyte		

108 Concentration: Hierarchically Assembled Gold Nanorods on Anodized Aluminum (Part. Part. Syst.) Tj ETQq0 0 0 rgBI.¹/₂Overlock 10 Tf 50

#	Article	IF	CITATIONS
109	SERS Platforms of Plasmonic Hydrophobic Surfaces for Analyte Concentration: Hierarchically Assembled Gold Nanorods on Anodized Aluminum. Particle and Particle Systems Characterization, 2014, 31, 1134-1140.	1.2	18
110	Trace cancer biomarker quantification using polystyrene-functionalized gold nanorods. Biomedical Optics Express, 2014, 5, 4101.	1.5	2
111	Copolymerization of Metal Nanoparticles: A Route to Colloidal Plasmonic Copolymers. Angewandte Chemie - International Edition, 2014, 53, 2648-2653.	7.2	77
112	Chiral plasmonic activity of cholesteric films formed by gold nanorods and cellulose nanocrystals. , 2014, , .		1
113	Self-assembled plasmonic nanostructures. Chemical Society Reviews, 2014, 43, 3976.	18.7	276
114	Chitosan/agarose hydrogels: Cooperative properties and microfluidic preparation. Carbohydrate Polymers, 2014, 111, 348-355.	5.1	80
115	Organized Solid Thin Films of Gold Nanorods with Different Sizes for Surface-Enhanced Raman Scattering Applications. Journal of Physical Chemistry C, 2014, 118, 28095-28100.	1.5	21
116	Strongly Coupled Plasmonic Modes on Macroscopic Areas via Template-Assisted Colloidal Self-Assembly. Nano Letters, 2014, 14, 6863-6871.	4.5	162
117	Structural and Optical Properties of Self-Assembled Chains of Plasmonic Nanocubes. Nano Letters, 2014, 14, 6314-6321.	4.5	92
118	Chiral Plasmonic Films Formed by Gold Nanorods and Cellulose Nanocrystals. Journal of the American Chemical Society, 2014, 136, 4788-4793.	6.6	272
119	Switchable Water: Microfluidic Investigation of Liquid–Liquid Phase Separation Mediated by Carbon Dioxide. Journal of the American Chemical Society, 2014, 136, 11972-11979.	6.6	34
120	Shaken, and stirred: oscillatory segmented flow for controlled size-evolution of colloidal nanomaterials. Lab on A Chip, 2014, 14, 2309-2318.	3.1	34
121	Microfluidic Generation of Composite Biopolymer Microgels with Tunable Compositions and Mechanical Properties. Biomacromolecules, 2014, 15, 2419-2425.	2.6	36
122	Characterization of the mechanical properties of microgels acting as cellular microenvironments. Soft Matter, 2013, 9, 2959.	1.2	37
123	Structural Transitions in Nanoparticle Assemblies Governed by Competing Nanoscale Forces. Journal of the American Chemical Society, 2013, 135, 10262-10265.	6.6	100
124	The motion of a microgel in an axisymmetric constriction with a tapered entrance. Soft Matter, 2013, 9, 10391.	1.2	19
125	Nanofibrillar thermoreversible micellar microgels. Soft Matter, 2013, 9, 2380.	1.2	18
126	Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses. Nature Communications, 2013, 4, 1586.	5.8	518

#	Article	IF	CITATIONS
127	Multiple Shape Transformations of Composite Hydrogel Sheets. Journal of the American Chemical Society, 2013, 135, 4834-4839.	6.6	302
128	Macroscale Plasmonic Substrates for Highly Sensitive Surfaceâ€Enhanced Raman Scattering. Angewandte Chemie - International Edition, 2013, 52, 6459-6463.	7.2	75
129	<i>In Situ</i> Plasmonic Counter for Polymerization of Chains of Gold Nanorods in Solution. ACS Nano, 2013, 7, 5901-5910.	7.3	63
130	Colloidal analogs of molecular chain stoppers. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18775-18779.	3.3	67
131	Macroscale Plasmonic Substrates for Highly Sensitive Surfaceâ€Enhanced Raman Scattering. Angewandte Chemie, 2013, 125, 6587-6591.	1.6	12
132	The Role of Substrate Wettability in Nanoparticle Transfer from Wrinkled Elastomers: Fundamentals and Application toward Hierarchical Patterning. Langmuir, 2012, 28, 16745-16750.	1.6	34
133	Towards tailored topography: facile preparation of surface-wrinkled gradient poly(dimethyl siloxane) with continuously changing wavelength. RSC Advances, 2012, 2, 10185.	1.7	30
134	Photochemical Synthesis of Polymeric Fiber Coatings and Their Embedding in Matrix Material: Morphology and Nanomechanical Properties at the Fiber–Matrix Interface. ACS Applied Materials & Interfaces, 2012, 4, 3484-3492.	4.0	31
135	Large-Area Organization of pNIPAM-Coated Nanostars as SERS Platforms for Polycyclic Aromatic Hydrocarbons Sensing in Gas Phase. Langmuir, 2012, 28, 9168-9173.	1.6	94
136	Controlling the Degree of Polymerization, Bond Lengths, and Bond Angles of Plasmonic Polymers. Journal of the American Chemical Society, 2012, 134, 18853-18859.	6.6	68
137	Kinetics of Multicomponent Polymerization Reaction Studied in a Microfluidic Format. Macromolecules, 2012, 45, 4469-4475.	2.2	18
138	Side-by-Side Assembly of Gold Nanorods Reduces Ensemble-Averaged SERS Intensity. Journal of Physical Chemistry C, 2012, 116, 5538-5545.	1.5	67
139	Microfluidic Encapsulation of Cells in Polymer Microgels. Small, 2012, 8, 1633-1642.	5.2	231
140	High-throughput combinatorial cell co-culture using microfluidics. Integrative Biology (United) Tj ETQq0 0 0 rgBT	Overlock	10 Tf 50 222
141	Probing Dynamic Generation of Hot-Spots in Self-Assembled Chains of Gold Nanorods by Surface-Enhanced Raman Scattering. Journal of the American Chemical Society, 2011, 133, 7563-7570.	6.6	251
142	Self-assembly of inorganic nanorods. Chemical Society Reviews, 2011, 40, 656.	18.7	232
143	Multifunctional Hybrid Polymerâ€Based Porous Materials. Advanced Functional Materials, 2011, 21, 1959-1969.	7.8	23

144High-throughput generation of hydrogel microbeads with varying elasticity for cell encapsulation.5.7183Biomaterials, 2011, 32, 1477-1483.

#	Article	IF	CITATIONS
145	Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nature Nanotechnology, 2010, 5, 15-25.	15.6	1,449
146	Microfluidic Synthesis of Polymer and Inorganic Particulate Materials. Annual Review of Materials Research, 2010, 40, 415-443.	4.3	194
147	Microgels with an Interpenetrating Network Structure as a Model System for Cell Studies. Macromolecules, 2010, 43, 7277-7281.	2.2	32
148	Rapid, cost-efficient fabrication of microfluidic reactors in thermoplastic polymers by combining photolithography and hot embossing. Lab on A Chip, 2010, 10, 522-524.	3.1	84
149	Step-Growth Polymerization of Inorganic Nanoparticles. Science, 2010, 329, 197-200.	6.0	475
150	A microfluidic route to small CO ₂ microbubbles with narrow size distribution. Soft Matter, 2010, 6, 630-634.	1.2	38
151	A Microfluidic Approach to Chemically Driven Assembly of Colloidal Particles at Gas–Liquid Interfaces. Angewandte Chemie - International Edition, 2009, 48, 5300-5304.	7.2	83
152	Toward Controlling the Surface Morphology of Macroporous Copolymer Particles. Macromolecules, 2009, 42, 1990-1994.	2.2	35
153	Multiple modular microfluidic (M3) reactors for the synthesis of polymer particles. Lab on A Chip, 2009, 9, 2715.	3.1	128
154	Photothermally-triggered self-assembly of gold nanorods. Chemical Communications, 2009, , 2571.	2.2	81
155	Microfluidic generation of microgels from synthetic and natural polymers. Chemical Society Reviews, 2009, 38, 2161.	18.7	240
156	Emulsification in a microfluidic flow-focusing device: effect of the viscosities of the liquids. Microfluidics and Nanofluidics, 2008, 5, 585-594.	1.0	299
157	Evolution of Selfâ€Assembled Structures of Polymerâ€Terminated Gold Nanorods in Selective Solvents. Advanced Materials, 2008, 20, 4318-4322.	11.1	124
158	Patterning surfaces with functional polymers. Nature Materials, 2008, 7, 277-290.	13.3	841
159	Simultaneous generation of droplets with different dimensions in parallel integrated microfluidic droplet generators. Soft Matter, 2008, 4, 258-262.	1.2	93
160	"Supramolecular―Assembly of Gold Nanorods End-Terminated with Polymer "Pom-Pomsâ€ŧ  Effect of Pom-Pom Structure on the Association Modes. Journal of the American Chemical Society, 2008, 130, 3683-3689.	6.6	213
161	An "Inside-Out―Microfluidic Approach to Monodisperse Emulsions Stabilized by Solid Particles. Journal of the American Chemical Society, 2008, 130, 16508-16509.	6.6	109
162	Polymer nanostructured material for the recording of biometric features. Journal of Materials Chemistry, 2007, 17, 523-526.	6.7	29

#	Article	IF	CITATIONS
163	Microfluidic consecutive flow-focusing droplet generators. Soft Matter, 2007, 3, 986.	1.2	230
164	Screening of the Effect of Surface Energy of Microchannels on Microfluidic Emulsification. Langmuir, 2007, 23, 8010-8014.	1.6	78
165	Exploring Microfluidic Routes to Microgels of Biological Polymers. Macromolecular Rapid Communications, 2007, 28, 527-538.	2.0	196
166	Self-assembly of metal–polymer analogues of amphiphilic triblock copolymers. Nature Materials, 2007, 6, 609-614.	13.3	746
167	TEM Imaging of Polymer Multilayer Particles:Â Advantages, Limitations, and Artifacts. Macromolecules, 2006, 39, 2441-2444.	2.2	14
168	MICROGELS: Old Materials with New Applications. Annual Review of Materials Research, 2006, 36, 117-142.	4.3	275
169	Janus and Ternary Particles Generated by Microfluidic Synthesis:Â Design, Synthesis, and Self-Assembly. Journal of the American Chemical Society, 2006, 128, 9408-9412.	6.6	692
170	Design of Biocompatible Chitosan Microgels for Targeted pH-Mediated Intracellular Release of Cancer Therapeutics. Biomacromolecules, 2006, 7, 1568-1572.	2.6	221
171	Microfluidic Production of Biopolymer Microcapsules with Controlled Morphology. Journal of the American Chemical Society, 2006, 128, 12205-12210.	6.6	335
172	From polyelectrolyte to polyampholyte microgels: comparison of swelling properties. Colloid and Polymer Science, 2006, 284, 1073-1084.	1.0	62
173	Generation of Monodisperse Particles by Using Microfluidics: Control over Size, Shape, and Composition. Angewandte Chemie - International Edition, 2005, 44, 724-728.	7.2	700
174	Colloidal Crystallization Accomplished by Electrodeposition on Patterned Substrates. Journal of Dispersion Science and Technology, 2005, 26, 259-265.	1.3	10
175	Microfluidics:Â From Dynamic Lattices to Periodic Arrays of Polymer Disks. Langmuir, 2005, 21, 4773-4775.	1.6	81
176	Continuous Microfluidic Reactors for Polymer Particles. Langmuir, 2005, 21, 11614-11622.	1.6	244
177	Rationalized Approach to Molecular Tailoring of Polymetallocenes with Predictable Optical Properties. Chemistry of Materials, 2004, 16, 5205-5211.	3.2	55
178	Electrodeposition of Polymerâ^'Semiconductor Nanocomposite Films. Chemistry of Materials, 2004, 16, 4122-4127.	3.2	35
179	Polyferrocenes: metallopolymers with tunable and high refractive indicesElectronic supplementary information (ESI) available: synthesis of polyferrocenes, film preparation and ellipsometric characterization. See http://www.rsc.org/suppdata/cc/b3/b311934c/. Chemical Communications, 2004, , 234.	2.2	53
180	Monodisperse Chitosan Nanoparticles for Mucosal Drug Delivery. Biomacromolecules, 2004, 5, 2461-2468.	2.6	241

#	Article	IF	CITATIONS
181	Formation of monodisperse bubbles in a microfluidic flow-focusing device. Applied Physics Letters, 2004, 85, 2649-2651.	1.5	563
182	Two-Dimensional Colloid Crystals Obtained by Coupling of Flow and Confinement. Physical Review Letters, 2003, 91, 128301.	2.9	66
183	Core-shell particles: building blocks for advanced polymer materials. Macromolecular Symposia, 2003, 192, 191-206.	0.4	14
184	Nanostructured Polymer Films with Liquid Inclusions. 2. Material Morphology and Properties. Macromolecules, 2002, 35, 3675-3680.	2.2	6
185	Response of adsorbed layers of hydroxypropyl cellulose to variations in ambient humidity. Colloid and Polymer Science, 2002, 280, 607-615.	1.0	5
186	Characterization of internal order of colloidal crystals by optical diffraction. Optical and Quantum Electronics, 2002, 34, 27-36.	1.5	23
187	Monodispersed Silicaâ^'Titanyl Sulfate Microspheres. Langmuir, 2001, 17, 7912-7917.	1.6	19
188	Nanostructured Polymer Films with Liquid Inclusions. 1. Structural Blocks. Macromolecules, 2001, 34, 6380-6386.	2.2	22
189	Polymeric nanostructured material for high-density three-dimensional optical memory storage. Journal of Applied Physics, 2001, 90, 5328-5334.	1.1	60
190	Thin Films of Liquid Crystals Confined between Crystalline Surfaces. Journal of Physical Chemistry B, 2000, 104, 8822-8829.	1.2	12
191	Convection in Polymeric Fluids Subjected to Vertical Temperature Gradients. Macromolecules, 2000, 33, 4972-4978.	2.2	62
192	Convection Patterns Trapped in the Solid State by UV-Induced Polymerization. Langmuir, 2000, 16, 7275-7278.	1.6	18
193	POLYMER 3D NANOCOMPOSITES: NEW ROUTES TO DEVELOPMENT. , 2000, , .		0
194	Self-Assembly of Substituted Polyglutamates on Solid Substrates:Â The Side-Chain Effect. Langmuir, 1999, 15, 1698-1702.	1.6	14
195	A "Coreâ^'Shell―Approach to Producing 3D Polymer Nanocomposites. Macromolecules, 1999, 32, 4122-4129.	2.2	95
196	Self-Assembly of Polypeptide Molecules on Charged Surfaces. 1. Effect of Polydispersity. Langmuir, 1998, 14, 5568-5572.	1.6	9
197	Brush formation from mixtures of short and long end-functionalized chains in a good solvent. Macromolecules, 1993, 26, 6477-6482.	2.2	50
198	Oxidative Elimination and Reductive Addition of Thiolâ€Terminated Polymer Ligands to Metal Nanoparticles. Angewandte Chemie, 0, , .	1.6	0