Alessandro F Gualtieri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4509347/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human Health Hazards Associated with Asbestos in Building Materials. , 2022, , 297-325.		5
2	Characterisation of potentially toxic natural fibrous zeolites by means of electron paramagnetic resonance spectroscopy and morphological-mineralogical studies. Chemosphere, 2022, 291, 133067.	8.2	7
3	Acute cytotoxicity of mineral fibres observed by time-lapse video microscopy. Toxicology, 2022, 466, 153081.	4.2	9
4	Letter to the Editor: Comments on the paper of Wylie and Korchevskiy - Carcinogenicity of fibrous glaucophane: How should we fill the data gaps?. Current Research in Toxicology, 2022, 3, 100063.	2.7	1
5	Al-Substituted Tobermorites: An Effective Cation Exchanger Synthesized from "End-of-Waste― Materials. ACS Omega, 2022, 7, 1694-1702.	3.5	4
6	The Acute Toxicity of Mineral Fibres: A Systematic In Vitro Study Using Different THP-1 Macrophage Phenotypes. International Journal of Molecular Sciences, 2022, 23, 2840.	4.1	6
7	Crystal structure determination of a lifelong biopersistent asbestos fibre using single-crystal synchrotron X-ray micro-diffraction. IUCrJ, 2021, 8, 76-86.	2.2	7
8	Bridging the gap between toxicity and carcinogenicity of mineral fibres by connecting the fibre crystal-chemical and physical parameters to the key characteristics of cancer. Current Research in Toxicology, 2021, 2, 42-52.	2.7	19
9	Occurrence and characterization of tremolite asbestos from the Mid Atlantic Ridge. Scientific Reports, 2021, 11, 6285.	3.3	9
10	In vitro toxicity of fibrous glaucophane. Toxicology, 2021, 454, 152743.	4.2	11
11	A Systematic Study of the Cryogenic Milling of Chrysotile Asbestos. Applied Sciences (Switzerland), 2021, 11, 4826.	2.5	3
12	Management of Asbestos Containing Materials: A Detailed LCA Comparison of Different Scenarios Comprising First Time Asbestos Characterization Factor Proposal. Environmental Science & Technology, 2021, 55, 12672-12682.	10.0	7
13	Characterization and assessment of the potential toxicity/pathogenicity of Russian commercial chrysotile. American Mineralogist, 2021, 106, 1606-1621.	1.9	10
14	Characterization of Fibrous Wollastonite NYAD G in View of Its Use as Negative Standard for In Vitro Toxicity Tests. Minerals (Basel, Switzerland), 2021, 11, 1378.	2.0	4
15	Recycling of thermally treated cement-asbestos for the production of porcelain stoneware slabs. Journal of Cleaner Production, 2020, 247, 119084.	9.3	16
16	Naturally Occurring Asbestos: A Global Health Concern? State of the Art and Open Issues. Environmental and Engineering Geoscience, 2020, 26, 3-8.	0.9	6
17	Lung Cancer: Mechanisms of Carcinogenesis by Asbestos. , 2020, , 239-256.		5
18	Emission of fibres and atmospheric pollutants from the thermal treatment of asbestos containing waste (ACW). Journal of Cleaner Production, 2020, 268, 122179.	9.3	15

#	Article	lF	CITATIONS
19	Oligocene-Miocene volcanism in the Apennines: discovery and characterization of a baryte and Ba-rich phillipsite bed in the lower part of the Ranzano Formation (Reggio Emilia, Italy). Italian Journal of Geosciences, 2020, 139, 287-299.	0.8	2
20	lron from a geochemical viewpoint. Understanding toxicity/pathogenicity mechanisms in iron-bearing minerals with a special attention to mineral fibers. Free Radical Biology and Medicine, 2019, 133, 21-37.	2.9	30
21	Structure Model and Toxicity of the Product of Biodissolution of Chrysotile Asbestos in the Lungs. Chemical Research in Toxicology, 2019, 32, 2063-2077.	3.3	17
22	Characterization and assessment of the potential toxicity/pathogenicity of fibrous glaucophane. Environmental Research, 2019, 178, 108723.	7.5	17
23	Formation of tubular carbonate conduits at Athina mud volcano, eastern Mediterranean Sea. Marine and Petroleum Geology, 2019, 107, 20-31.	3.3	8
24	Characterisation of fibrous ferrierite in the rhyolitic tuffs at Lovelock, Nevada, USA. Mineralogical Magazine, 2019, 83, 577-586.	1.4	9
25	Experimental quantification of the Fe-valence state at amosite-asbestos boundaries using acSTEM dual-electron energy-loss spectroscopy. American Mineralogist, 2019, 104, 1820-1828.	1.9	8
26	Biodurability and release of metals during the dissolution of chrysotile, crocidolite and fibrous erionite. Environmental Research, 2019, 171, 550-557.	7.5	33
27	Depicting the crystal structure of fibrous ferrierite from British Columbia using a combined synchrotron techniques approach. Journal of Applied Crystallography, 2019, 52, 1397-1408.	4.5	7
28	Assessment of the potential hazard represented by natural raw materials containing mineral fibres—The case of the feldspar from Orani, Sardinia (Italy). Journal of Hazardous Materials, 2018, 350, 76-87.	12.4	12
29	Structural characterization and functional correlation of Fe3O4 nanocrystals obtained using 2-ethyl-1,3-hexanediol as innovative reactive solvent in non-hydrolytic sol-gel synthesis. Materials Chemistry and Physics, 2018, 207, 337-349.	4.0	16
30	Is fibrous ferrierite a potential health hazard? Characterization and comparison with fibrous erionite. American Mineralogist, 2018, 103, 1044-1055.	1.9	21
31	Infra Red Spectroscopy of the Regulated Asbestos Amphiboles. Minerals (Basel, Switzerland), 2018, 8, 413.	2.0	16
32	Synchrotron Nano-Diffraction Study of Thermally Treated Asbestos Tremolite from Val d'Ala, Turin (Italy). Minerals (Basel, Switzerland), 2018, 8, 311.	2.0	5
33	Towards a quantitative model to predict the toxicity/pathogenicity potential of mineral fibers. Toxicology and Applied Pharmacology, 2018, 361, 89-98.	2.8	41
34	Effect of Grinding on Chrysotile, Amosite and Crocidolite and Implications for Thermal Treatment. Minerals (Basel, Switzerland), 2018, 8, 135.	2.0	21
35	The Effect of Grinding on Tremolite Asbestos and Anthophyllite Asbestos. Minerals (Basel,) Tj ETQq1 1 0.78431	4 rgBT /Ov 2.0	erlock 10 Tf 5
36	In vitro acellular dissolution of mineral fibres: A comparative study. Scientific Reports, 2018, 8, 7071.	3.3	40

#	Article	IF	CITATIONS
37	Crop evapotranspiration assessment under climate change in the Pannonian basin during 1991–2050. Meteorological Applications, 2017, 24, 84-91.	2.1	23
38	Production of nanoparticles during experimental deformation of smectite and implications for seismic slip. Earth and Planetary Science Letters, 2017, 463, 221-231.	4.4	31
39	New insights into the toxicity of mineral fibres: A combined in situ synchrotron μ-XRD and HR-TEM study of chrysotile, crocidolite, and erionite fibres found in the tissues of Sprague-Dawley rats. Toxicology Letters, 2017, 274, 20-30.	0.8	14
40	Sharing different perspectives to understand asbestosâ€induced carcinogenesis: A comment to Jiang <i>etÂal</i> . (2016). Cancer Science, 2017, 108, 156-157.	3.9	3
41	Investigation of the Setting Reaction in Magnesium Phosphate Ceramics with Quasielastic Neutron Scattering. Journal of Physical Chemistry C, 2017, 121, 11355-11367.	3.1	21
42	Climate change effects on crop evapotranspiration in the Carpathian Region from 1961 to 2010. Meteorological Applications, 2016, 23, 462-469.	2.1	20
43	Where is iron in erionite? A multidisciplinary study on fibrous erionite-Na from Jersey (Nevada, USA). Scientific Reports, 2016, 6, 37981.	3.3	28
44	Progress in mineralogical quantitative analysis of rock samples: application to quartzites from Denali National Park, Alaska Range (USA). Powder Diffraction, 2016, 31, 31-39.	0.2	4
45	Stability of mineral fibres in contact with human cell cultures. An in situ μXANES, μXRD and XRF iron mapping study. Chemosphere, 2016, 164, 547-557.	8.2	23
46	Consensus Report of the 2015 Weinman International Conference on Mesothelioma. Journal of Thoracic Oncology, 2016, 11, 1246-1262.	1.1	122
47	In situ high-temperature X-ray diffraction and spectroscopic study of fibroferrite, FeOH(SO4)·5H2O. Physics and Chemistry of Minerals, 2016, 43, 587-595.	0.8	3
48	Removal of fluoroquinolone contaminants from environmental waters on sepiolite and its photo-induced regeneration. Chemosphere, 2016, 150, 686-693.	8.2	40
49	In situ synchrotron powder diffraction study of the setting reaction kinetics of magnesium-potassium phosphate cements. Cement and Concrete Research, 2016, 79, 344-352.	11.0	46
50	Kinetic study of the drying process of clay bricks. Journal of Thermal Analysis and Calorimetry, 2016, 123, 153-167.	3.6	16
51	Assessment of asbestos body formation by high resolution FEG–SEM after exposure of Sprague–Dawley rats to chrysotile, crocidolite, or erionite. Journal of Hazardous Materials, 2016, 306, 95-104.	12.4	29
52	TG/DSC study of the thermal behaviour of hazardous mineral fibres. Journal of Thermal Analysis and Calorimetry, 2016, 123, 2225-2239.	3.6	45
53	Influence of sol counter-ions on the anatase-to-rutile phase transformation and microstructure of nanocrystalline TiO ₂ . CrystEngComm, 2015, 17, 1813-1825.	2.6	11
54	Raw and thermally treated cement asbestos exerts different cytotoxicity effects on A549 cells in vitro. Acta Histochemica, 2015, 117, 29-39.	1.8	5

#	Article	IF	CITATIONS
55	In situ high-temperature XRD and FTIR investigation of hohmannite, a water-rich Fe-sulfate, and its decomposition products. Journal of Thermal Analysis and Calorimetry, 2015, 119, 1793-1802.	3.6	9
56	Nitrogen-modified nano-titania: True phase composition, microstructure and visible-light induced photocatalytic NO abatement. Journal of Solid State Chemistry, 2015, 231, 87-100.	2.9	18
57	The chemical environment of iron in mineral fibres. A combined X-ray absorption and Mössbauer spectroscopic study. Journal of Hazardous Materials, 2015, 298, 282-293.	12.4	44
58	Structure and stability of BaTiSi ₂ O ₇ . Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2015, 71, 153-163.	1.1	4
59	Preparation of phosphoric acid-based geopolymer foams using limestone as pore forming agent – Thermal properties by in situ XRPD and Rietveld refinements. Journal of the European Ceramic Society, 2015, 35, 3167-3178.	5.7	80
60	Frictional properties of fault zone gouges from the Jâ€FAST drilling project (<i>M_w</i> 9.0) Tj ETQc	0 0 0 rgBT	Gyerlock 10
61	Quantitative phase analysis and microstructure characterization of magnetite nanocrystals obtained by microwave assisted non-hydrolytic sol–gel synthesis. Materials Characterization, 2015, 100, 88-97.	4.4	15
62	Inorganic polymers from laterite using activation with phosphoric acid and alkaline sodium silicate solution: Mechanical and microstructural properties. Cement and Concrete Research, 2015, 67, 259-270.	11.0	70
63	The concept of â€~end of waste' and recycling of hazardous materials: in depth characterization of the product of thermal transformation of cement-asbestos. Mineralogical Magazine, 2014, 78, 1177-1191.	1.4	7
64	Magnetic and nuclear structure of goethite (α-FeOOH): a neutron diffraction study. Journal of Applied Crystallography, 2014, 47, 1983-1991.	4.5	18
65	Determination of the concentration of asbestos minerals in highly contaminated mine tailings: An example from abandoned mine waste of Cretaz and Emarese (Valle d'Aosta, Italy). American Mineralogist, 2014, 99, 1233-1247.	1.9	19
66	Preparation of magnesium phosphate cement by recycling the product of thermal transformation of asbestos containing wastes. Cement and Concrete Research, 2014, 58, 56-66.	11.0	62
67	Facile synthesis of B-type carbonated nanoapatite with tailored microstructure. Journal of Solid State Chemistry, 2014, 220, 60-69.	2.9	2
68	Accuracy in quantitative phase analysis of mixtures with large amorphous contents. The case of zircon-rich sanitary-ware glazes. Journal of Applied Crystallography, 2014, 47, 136-145.	4.5	10
69	Accuracy in quantitative phase analysis of mixtures with large amorphous contents. The case of stoneware ceramics and bricks. Journal of Applied Crystallography, 2014, 47, 835-846.	4.5	26
70	Silver-Modified Nano-titania as an Antibacterial Agent and Photocatalyst. Journal of Physical Chemistry C, 2014, 118, 4751-4766.	3.1	81
71	The zeta potential of mineral fibres. Journal of Hazardous Materials, 2014, 276, 469-479.	12.4	68
72	Crystal chemistry of clinker relicts from aged cementitious materials. Journal of Applied Crystallography, 2014, 47, 1626-1637.	4.5	3

#	Article	IF	CITATIONS
73	The thermal stability of sideronatrite and its decomposition products in the system Na2O–Fe2O3–SO2–H2O. Physics and Chemistry of Minerals, 2013, 40, 659-670.	0.8	10
74	Sol–gel synthesis, characterisation and photocatalytic activity of pure, W-, Ag- and W/Ag co-doped TiO2 nanopowders. Chemical Engineering Journal, 2013, 214, 364-375.	12.7	73
75	Crystal chemistry of the high temperature product of transformation of cement-asbestos. Journal of Hazardous Materials, 2013, 248-249, 69-80.	12.4	28
76	Recycling the product of thermal transformation of cement-asbestos for the preparation of calcium sulfoaluminate clinker. Journal of Hazardous Materials, 2013, 260, 813-818.	12.4	32
77	Anisotropy of green stoneware evaluated by ultrasound measurements in combination with texture analyses. Journal of the European Ceramic Society, 2013, 33, 2785-2792.	5.7	5
78	Phase composition, crystal structure and microstructure of silver and tungsten doped TiO2 nanopowders with tuneable photochromic behaviour. Acta Materialia, 2013, 61, 5571-5585.	7.9	53
79	Mechanism of lustre formation in scheelite-based glazes. Journal of the European Ceramic Society, 2013, 33, 2055-2064.	5.7	12
80	Crystal chemistry of cement-asbestos. American Mineralogist, 2013, 98, 1095-1105.	1.9	23
81	The dehydroxylation of serpentine group minerals. American Mineralogist, 2012, 97, 666-680.	1.9	56
82	Full quantitative phase analysis of hydrated lime using the Rietveld method. Cement and Concrete Research, 2012, 42, 1273-1279.	11.0	31
83	Mineralogical and Optical Characterization of SiO ₂ â€, Nâ€, and SiO ₂ /N oâ€Đoped Titania Nanopowders. Journal of the American Ceramic Society, 2012, 95, 1709-1716.	3.8	12
84	Recycling of the product of thermal inertization of cement-asbestos in geopolymers. Construction and Building Materials, 2012, 31, 47-51.	7.2	22
85	In vitro biodurability of the product of thermal transformation of cement–asbestos. Journal of Hazardous Materials, 2012, 205-206, 63-71.	12.4	9
86	Crystal structure of Na3Fe(SO4)3: A high-temperature product (Â400 ÂC) of sideronatrite [Na2Fe(SO4)2OH{middle dot}3H2O]. American Mineralogist, 2011, 96, 1107-1111.	1.9	5
87	Quantitative determination of chrysotile in massive serpentinites using DTA: Implications for asbestos determinations. American Mineralogist, 2011, 96, 1003-1011.	1.9	17
88	Recycling of the product of thermal inertization of cement–asbestos for various industrial applications. Waste Management, 2011, 31, 91-100.	7.4	53
89	Recycling of the product of thermal inertization of cement–asbestos for the production of concrete. Construction and Building Materials, 2011, 25, 3561-3569.	7.2	40
90	Influence of body composition on the technological properties and mineralogy of stoneware: A DOE and mineralogical–microstructural study. Journal of the European Ceramic Society, 2011, 31, 673-685.	5.7	28

#	Article	IF	CITATIONS
91	Spectroscopic study of the product of thermal transformation of chrysotile-asbestos containing materials (ACM). European Journal of Mineralogy, 2010, 22, 535-546.	1.3	30
92	Thermal conductivity of fired clays: Effects of mineralogical and physical properties of the raw materials. Applied Clay Science, 2010, 49, 269-275.	5.2	106
93	Biological effects and comparative cytotoxicity of thermal transformed asbestos-containing materials in a human alveolar epithelial cell line. Toxicology in Vitro, 2010, 24, 1521-1531.	2.4	27
94	Ambient monitoring of asbestos in selected Italian living areas. Journal of Environmental Management, 2009, 90, 3540-3552.	7.8	28
95	Development of Lowâ€Firing Bâ€Fluxed Stoneware Tiles. Journal of the American Ceramic Society, 2009, 92, 2571-2577.	3.8	13
96	The thermal transformation of Man Made Vitreous Fibers (MMVF) and safe recycling as secondary raw materials (SRM). Journal of Hazardous Materials, 2009, 162, 1494-1506.	12.4	26
97	In situsynchrotron powder diffraction study of the thermal decomposition of cement-asbestos: Preliminary results. Zeitschrift FÃ1⁄4r Kristallographie, Supplement, 2009, 2009, 353-358.	0.5	2
98	The Rietveld structure refinement of an exceptionally pure sample of clinoptilolite from Ecuador and its Na-, K-, and Ca-exchanged forms. Zeitschrift Für Kristallographie, Supplement, 2009, 2009, 395-400.	0.5	1
99	Annealing effects on plasma-sprayed Ni: An XRPD study. Surface and Coatings Technology, 2008, 203, 345-349.	4.8	3
100	Structural characterization of the clay mineral illite-1M. Journal of Applied Crystallography, 2008, 41, 402-415.	4.5	82
101	Seeded growth of TPA-MFI films using the fluoride route. Microporous and Mesoporous Materials, 2008, 111, 604-611.	4.4	13
102	The transformation sequence of cement–asbestos slates up to 1200°C and safe recycling of the reaction product in stoneware tile mixtures. Journal of Hazardous Materials, 2008, 152, 563-570.	12.4	78
103	In situ ESEM study of the thermal decomposition of chrysotile asbestos in view of safe recycling of the transformation product. Journal of Hazardous Materials, 2008, 156, 260-266.	12.4	45
104	Synthesis of zeolite LTA films in the presence of nucleation suppressors. Studies in Surface Science and Catalysis, 2008, , 649-652.	1.5	0
105	Direnzoite, [NaK6MgCa2(Al13Si47O120){middle dot}36H2O], a new zeolite from Massif Central (France): Description and crystal structure. American Mineralogist, 2008, 93, 95-102.	1.9	11
106	In situ high-temperature synchrotron powder diffraction study of the thermal decomposition of cement-asbestos. Powder Diffraction, 2008, 23, 323-328.	0.2	9
107	In situ study of dehydration of ECR1: Na-as synthesized and NH4-exchanged in comparison. Studies in Surface Science and Catalysis, 2008, , 901-904.	1.5	0
108	The comparison of the crystal structures of direnzoite, a new zeolite from Massif Central (France), and its synthetic counterpart ECR-1. Studies in Surface Science and Catalysis, 2008, , 499-504.	1.5	1

#	Article	IF	CITATIONS
109	Crystallization Kinetics of Bioactive Glasses in the ZnOâ^'Na ₂ Oâ^'CaOâ^'SiO ₂ System. Journal of Physical Chemistry A, 2007, 111, 8401-8408.	2.5	20
110	Crack formation in α-alumina supported MFI zeolite membranes studied by in situ high temperature synchrotron powder diffraction. Journal of Membrane Science, 2007, 290, 95-104.	8.2	39
111	Cronstedt's zeolite. Microporous and Mesoporous Materials, 2007, 105, 213-221.	4.4	34
112	Thermal Behavior of the Raw Materials Forming Porcelain Stoneware Mixtures by Combined Optical and In Situ X-Ray Dilatometry. Journal of the American Ceramic Society, 2007, 90, 1222-1231.	3.8	51
113	Rietveld structure refinement of NH4-exchanged natural chabazite. European Journal of Mineralogy, 2006, 18, 351-359.	1.3	29
114	Rietveld Structure Refinement of Zeolite ECR-1. Chemistry of Materials, 2006, 18, 76-84.	6.7	22
115	The use of illitic clays in the production of stoneware tile ceramics. Applied Clay Science, 2006, 32, 73-81.	5.2	138
116	Quantitative phase analysis of hydraulic limes using the Rietveld method. Cement and Concrete Research, 2006, 36, 401-406.	11.0	34
117	The influence of heating rate on template removal in silicalite-1: An in situ HT-XRPD study. Microporous and Mesoporous Materials, 2006, 89, 1-8.	4.4	29
118	The structure of K-hydrosodalite. Microporous and Mesoporous Materials, 2006, 96, 276-286.	4.4	11
119	Quantitative determination of the amorphous phase in plasma sprayed alumina coatings using the Rietveld method. Surface and Coatings Technology, 2006, 201, 2984-2989.	4.8	39
120	Kinetics of illite dehydroxylation. Physics and Chemistry of Minerals, 2006, 33, 490-501.	0.8	99
121	The use of nepheline-syenite in a body mix for porcelain stoneware tiles. Ceramics International, 2005, 31, 233-240.	4.8	73
122	The order-disorder character of FeOHSO4 obtained from the thermal decomposition of metahohmannite, Fe3+2(H2O)4[O(SO4)2]. American Mineralogist, 2005, 90, 679-686.	1.9	21
123	Dissolution kinetics and diffusivity of silver in glassy layers for hybrid microelectronics. Journal of Materials Science: Materials in Electronics, 2004, 15, 447-453.	2.2	14
124	Rapid and accurate quantitative phase analysis using a fast detector. Journal of Applied Crystallography, 2004, 37, 8-13.	4.5	27
125	Simultaneous refinement of structure and microstructure of layered materials. Journal of Applied Crystallography, 2004, 37, 166-173.	4.5	81
126	Modulation of the Absorption, Fluorescence, and Liquid-Crystal Properties of Functionalised Diarylethene Derivatives. Chemistry - A European Journal, 2004, 10, 5243-5250.	3.3	70

#	Article	IF	CITATIONS
127	Tubular-Shaped Stoichiometric Chrysotile Nanocrystals. Chemistry - A European Journal, 2004, 10, 3043-3049.	3.3	128
128	The atomic structure of bakerite and its relationship to datolite. American Mineralogist, 2004, 89, 767-776.	1.9	22
129	The structure of metahohmannite, Fe ₂ ³⁺ [O(SO ₄) ₂]·4H ₂ O, by in situ synchrotron powder diffraction. American Mineralogist, 2004, 89, 365-370.	1.9	14
130	Accurate measurement of the thermal expansion of MFI zeolite membranes by in situ HTXRPD. Studies in Surface Science and Catalysis, 2004, 154, 703-709.	1.5	5
131	Kinetic study of the dehydroxylation of chrysotile asbestos with temperature by in situ XRPD. Physics and Chemistry of Minerals, 2003, 30, 177-183.	0.8	81
132	Determination of low levels of free fibres of chrysotile in contaminated soils by X-ray diffraction and FTIR spectroscopy. Analytical and Bioanalytical Chemistry, 2003, 376, 653-658.	3.7	34
133	Template Burning inside TS-1 and Fe-MFI Molecular Sieves:Â An in Situ XRPD Study. Journal of the American Chemical Society, 2003, 125, 14549-14558.	13.7	79
134	A new method for the detection of low levels of free fibres of chrysotile in contaminated soils by X-ray powder diffraction. Journal of Environmental Monitoring, 2003, 5, 654.	2.1	3
135	Phase transformations and reaction kinetics during the temperature-induced oxidation of natural olivine. American Mineralogist, 2003, 88, 1560-1574.	1.9	25
136	Exploring the Damage Limitation Possibilities of Mineral Fibres for Future Integrated Solutions: An in Vitro Study. International Journal of Artificial Organs, 2003, 26, 73-79.	1.4	1
137	The nature of disorder in montmorillonite by simulation of X-ray powder patterns. American Mineralogist, 2002, 87, 966-975.	1.9	258
138	Ion exchange selectivity of phillipsite. Studies in Surface Science and Catalysis, 2002, , 1705-1712.	1.5	6
139	Lead-free thick film resistors: an explorative investigation. Journal of Materials Science: Materials in Electronics, 2002, 13, 31-37.	2.2	18
140	Devitrification kinetics of high lead glass for hybrid microelectronics. Solid State Sciences, 2001, 3, 667-674.	0.7	12
141	In situ dehydration of yugawaralite. American Mineralogist, 2001, 86, 185-192.	1.9	19
142	Synthesis of sodium zeolites from a natural halloysite. Physics and Chemistry of Minerals, 2001, 28, 719-728.	0.8	148
143	Multipurpose imaging-plate camera forin situpowder XRD at the GILDA beamline. Journal of Synchrotron Radiation, 2001, 8, 1162-1166.	2.4	81
144	The crystal chemistry of paulingite. European Journal of Mineralogy, 2001, 13, 113-119.	1.3	13

#	Article	IF	CITATIONS
145	A solution for the full impregnation of asbestos: The use of an epoxy polymer resin. Journal of Applied Polymer Science, 2000, 75, 713-720.	2.6	12
146	Accuracy of XRPD QPA using the combined Rietveld–RIR method. Journal of Applied Crystallography, 2000, 33, 267-278.	4.5	372
147	Study of NH4 + in the zeolite phillipsite by combined synchrotron powder diffraction and IR spectroscopy. Acta Crystallographica Section B: Structural Science, 2000, 56, 584-593.	1.8	23
148	Thermal decomposition of asbestos and recycling in traditional ceramics. Journal of the European Ceramic Society, 2000, 20, 1409-1418.	5.7	113
149	Wollastonite polytypes in the CaO-SiO 2 system Physics and Chemistry of Minerals, 2000, 27, 565-574.	0.8	32
150	Formation of α-Eucryptite, LiAlSiO4: An In-Situ Synchrotron X-ray Powder Diffraction Study of a High Temperature Hydrothermal Synthesis. Chemistry of Materials, 2000, 12, 1473-1479.	6.7	18
151	XANES study of the local environment of iron in natural kaolinites. European Journal of Mineralogy, 2000, 12, 17-23.	1.3	13
152	In situ study of the goethite-hematite phase transformation by real time synchrotron powder diffraction. American Mineralogist, 1999, 84, 895-904.	1.9	295
153	Rietveld structure refinement of Sr-exchanged phillipsites. Microporous and Mesoporous Materials, 1999, 31, 33-43.	4.4	16
154	Ion exchange selectivity of phillipsite for Cs+: a structural investigation using the Rietveld method. Microporous and Mesoporous Materials, 1999, 32, 319-329.	4.4	22
155	X-ray powder diffraction quantitative analysis performedin situat high temperature: application to the determination of NiO in ceramic pigments. Journal of Applied Crystallography, 1999, 32, 808-813.	4.5	13
156	Differential anomalous wide-angle X-ray scattering and X-ray absorption experiments to investigate the formation of glass ceramics in the CaO–SiO2–ZrO2system. Journal of Applied Crystallography, 1999, 32, 1090-1099.	4.5	20
157	Determination of Nickel(II) Oxide in Ceramic Pigments by In Situ Xâ€ray Diffraction Quantitative Analysis. Journal of the American Ceramic Society, 1999, 82, 2566-2568.	3.8	11
158	High temperature dehydroxylation of muscovite-2M 1 : a kinetic study by in situ XRPD. Physics and Chemistry of Minerals, 1999, 26, 375-381.	0.8	84
159	Chromium crystal chemistry mullite–spinel refractory ceramics. Materials Research Bulletin, 1999, 34, 711-720.	5.2	8
160	Dehydration dynamics of analcime by in situ synchrotron powder diffraction. American Mineralogist, 1999, 84, 112-119.	1.9	77
161	Modelling the nature of disorder in talc by simulation of X-ray powder patterns. European Journal of Mineralogy, 1999, 11, 521-532.	1.3	16
162	Modelling the structure of the metastable phases in the reaction sequence kaolinite-mullite by X-ray scattering experiments. Physics and Chemistry of Minerals, 1998, 25, 442-452.	0.8	77

#	Article	IF	CITATIONS
163	Cation Migration in Zeolites:  An in Situ Powder Diffraction and MAS NMR Study of the Structure of Zeolite Cs(Na)â^'Y during Dehydration. Journal of Physical Chemistry B, 1998, 102, 839-856.	2.6	155
164	Interactions between bismuth oxide and ceramic substrates for thick film technology. Journal of Materials Research, 1998, 13, 1865-1874.	2.6	10
165	Crystal chemistry of the zeolites erionite and offretite. American Mineralogist, 1998, 83, 577-589.	1.9	48
166	Powder X-ray diffraction data for the new polymorphic compound ω- <i>Bi</i> ₂ <i>O</i> ₃ . Powder Diffraction, 1997, 12, 90-92.	0.2	90
167	Interactions between lead oxide and ceramic substrates for thick film technology. Journal of Materials Research, 1997, 12, 501-508.	2.6	19
168	Combined MAS NMR and X-ray Powder Diffraction Structural Characterization of Hydrofluorocarbon-134 Adsorbed on Zeolite NaY:Â Observation of Cation Migration and Strong Sorbateâ^'Cation Interactions. Journal of the American Chemical Society, 1997, 119, 1981-1989.	13.7	153
169	Dehydration dynamics of stilbite using synchrotron X-ray powder diffraction. American Mineralogist, 1997, 82, 729-739.	1.9	59
170	Kinetics of formation of zeolite Na-A [LTA] from natural kaolinites. Physics and Chemistry of Minerals, 1997, 24, 191-199.	0.8	94
171	Kinetic study of hydroxysodalite formation from natural kaolinites by time-resolved synchrotron powder diffraction. Microporous Materials, 1997, 9, 189-201.	1.6	33
172	Rietveld Refinement using Synchrotron X-ray Powder Diffraction Data Collected in Transmission Geometry using an Imaging-Plate Detector: Application to Standardm-ZrO2. Journal of Applied Crystallography, 1996, 29, 707-713.	4.5	69
173	Kinetic study of the kaolinite-mullite reaction sequence. Part I: Kaolinite dehydroxylation. Physics and Chemistry of Minerals, 1995, 22, 207.	0.8	179
174	Kinetic study of the kaolinite-mullite reaction sequence. Part II: Mullite formation. Physics and Chemistry of Minerals, 1995, 22, 215.	0.8	119
175	Nature of Structural Disorder in Natural Kaolinites: A New Model Based on Computer Simulation of Powder Diffraction Data and Electrostatic Energy Calculation. Clays and Clay Minerals, 1995, 43, 438-445.	1.3	53
176	Mullite and cristobalite formation in fired products starting from halloysitic clay. Applied Clay Science, 1992, 7, 251-262.	5.2	15
177	WebFPTI: A tool to predict the toxicity/pathogenicity of mineral fibres including asbestos. Earth Science Informatics, 0, , 1.	3.2	1