Alessandro F Gualtieri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4509347/publications.pdf

Version: 2024-02-01

177 papers 6,597 citations

43 h-index 79698 73 g-index

180 all docs

180 docs citations

180 times ranked 6552 citing authors

#	Article	IF	CITATIONS
1	Accuracy of XRPD QPA using the combined Rietveld–RIR method. Journal of Applied Crystallography, 2000, 33, 267-278.	4.5	372
2	In situ study of the goethite-hematite phase transformation by real time synchrotron powder diffraction. American Mineralogist, 1999, 84, 895-904.	1.9	295
3	The nature of disorder in montmorillonite by simulation of X-ray powder patterns. American Mineralogist, 2002, 87, 966-975.	1.9	258
4	Kinetic study of the kaolinite-mullite reaction sequence. Part I: Kaolinite dehydroxylation. Physics and Chemistry of Minerals, 1995, 22, 207.	0.8	179
5	Cation Migration in Zeolites:  An in Situ Powder Diffraction and MAS NMR Study of the Structure of Zeolite Cs(Na)â~Y during Dehydration. Journal of Physical Chemistry B, 1998, 102, 839-856.	2.6	155
6	Combined MAS NMR and X-ray Powder Diffraction Structural Characterization of Hydrofluorocarbon-134 Adsorbed on Zeolite NaY:Â Observation of Cation Migration and Strong Sorbateâ^'Cation Interactions. Journal of the American Chemical Society, 1997, 119, 1981-1989.	13.7	153
7	Synthesis of sodium zeolites from a natural halloysite. Physics and Chemistry of Minerals, 2001, 28, 719-728.	0.8	148
8	The use of illitic clays in the production of stoneware tile ceramics. Applied Clay Science, 2006, 32, 73-81.	5.2	138
9	Tubular-Shaped Stoichiometric Chrysotile Nanocrystals. Chemistry - A European Journal, 2004, 10, 3043-3049.	3.3	128
10	Consensus Report of the 2015 Weinman International Conference on Mesothelioma. Journal of Thoracic Oncology, 2016, 11, 1246-1262.	1.1	122
11	Kinetic study of the kaolinite-mullite reaction sequence. Part II: Mullite formation. Physics and Chemistry of Minerals, 1995, 22, 215.	0.8	119
12	Thermal decomposition of asbestos and recycling in traditional ceramics. Journal of the European Ceramic Society, 2000, 20, 1409-1418.	5.7	113
13	Thermal conductivity of fired clays: Effects of mineralogical and physical properties of the raw materials. Applied Clay Science, 2010, 49, 269-275.	5.2	106
14	Kinetics of illite dehydroxylation. Physics and Chemistry of Minerals, 2006, 33, 490-501.	0.8	99
15	Kinetics of formation of zeolite Na-A [LTA] from natural kaolinites. Physics and Chemistry of Minerals, 1997, 24, 191-199.	0.8	94
16	Powder X-ray diffraction data for the new polymorphic compound	0.2	90
17	High temperature dehydroxylation of muscovite-2M $1:$ a kinetic study by in situ XRPD. Physics and Chemistry of Minerals, 1999, 26, 375-381.	0.8	84
18	Structural characterization of the clay mineral illite-1M. Journal of Applied Crystallography, 2008, 41, 402-415.	4.5	82

#	Article	IF	Citations
19	Multipurpose imaging-plate camera forin situpowder XRD at the GILDA beamline. Journal of Synchrotron Radiation, 2001, 8, 1162-1166.	2.4	81
20	Kinetic study of the dehydroxylation of chrysotile asbestos with temperature by in situ XRPD. Physics and Chemistry of Minerals, 2003, 30, 177-183.	0.8	81
21	Simultaneous refinement of structure and microstructure of layered materials. Journal of Applied Crystallography, 2004, 37, 166-173.	4.5	81
22	Silver-Modified Nano-titania as an Antibacterial Agent and Photocatalyst. Journal of Physical Chemistry C, 2014, 118, 4751-4766.	3.1	81
23	Preparation of phosphoric acid-based geopolymer foams using limestone as pore forming agent – Thermal properties by in situ XRPD and Rietveld refinements. Journal of the European Ceramic Society, 2015, 35, 3167-3178.	5.7	80
24	Template Burning inside TS-1 and Fe-MFI Molecular Sieves:Â An in Situ XRPD Study. Journal of the American Chemical Society, 2003, 125, 14549-14558.	13.7	79
25	The transformation sequence of cement–asbestos slates up to 1200°C and safe recycling of the reaction product in stoneware tile mixtures. Journal of Hazardous Materials, 2008, 152, 563-570.	12.4	78
26	Modelling the structure of the metastable phases in the reaction sequence kaolinite-mullite by X-ray scattering experiments. Physics and Chemistry of Minerals, 1998, 25, 442-452.	0.8	77
27	Dehydration dynamics of analcime by in situ synchrotron powder diffraction. American Mineralogist, 1999, 84, 112-119.	1.9	77
28	The use of nepheline-syenite in a body mix for porcelain stoneware tiles. Ceramics International, 2005, 31, 233-240.	4.8	73
29	Sol–gel synthesis, characterisation and photocatalytic activity of pure, W-, Ag- and W/Ag co-doped TiO2 nanopowders. Chemical Engineering Journal, 2013, 214, 364-375.	12.7	73
30	Modulation of the Absorption, Fluorescence, and Liquid-Crystal Properties of Functionalised Diarylethene Derivatives. Chemistry - A European Journal, 2004, 10, 5243-5250.	3.3	70
31	Inorganic polymers from laterite using activation with phosphoric acid and alkaline sodium silicate solution: Mechanical and microstructural properties. Cement and Concrete Research, 2015, 67, 259-270.	11.0	70
32	Rietveld Refinement using Synchrotron X-ray Powder Diffraction Data Collected in Transmission Geometry using an Imaging-Plate Detector: Application to Standardm-ZrO2. Journal of Applied Crystallography, 1996, 29, 707-713.	4.5	69
33	The zeta potential of mineral fibres. Journal of Hazardous Materials, 2014, 276, 469-479.	12.4	68
34	Preparation of magnesium phosphate cement by recycling the product of thermal transformation of asbestos containing wastes. Cement and Concrete Research, 2014, 58, 56-66.	11.0	62
35	Dehydration dynamics of stilbite using synchrotron X-ray powder diffraction. American Mineralogist, 1997, 82, 729-739.	1.9	59
36	The dehydroxylation of serpentine group minerals. American Mineralogist, 2012, 97, 666-680.	1.9	56

3

#	Article	IF	CITATIONS
37	Nature of Structural Disorder in Natural Kaolinites: A New Model Based on Computer Simulation of Powder Diffraction Data and Electrostatic Energy Calculation. Clays and Clay Minerals, 1995, 43, 438-445.	1.3	53
38	Recycling of the product of thermal inertization of cement–asbestos for various industrial applications. Waste Management, 2011, 31, 91-100.	7.4	53
39	Phase composition, crystal structure and microstructure of silver and tungsten doped TiO2 nanopowders with tuneable photochromic behaviour. Acta Materialia, 2013, 61, 5571-5585.	7.9	53
40	Thermal Behavior of the Raw Materials Forming Porcelain Stoneware Mixtures by Combined Optical and In Situ X-Ray Dilatometry. Journal of the American Ceramic Society, 2007, 90, 1222-1231.	3.8	51
41	Crystal chemistry of the zeolites erionite and offretite. American Mineralogist, 1998, 83, 577-589.	1.9	48
42	In situ synchrotron powder diffraction study of the setting reaction kinetics of magnesium-potassium phosphate cements. Cement and Concrete Research, 2016, 79, 344-352.	11.0	46
43	In situ ESEM study of the thermal decomposition of chrysotile asbestos in view of safe recycling of the transformation product. Journal of Hazardous Materials, 2008, 156, 260-266.	12.4	45
44	TG/DSC study of the thermal behaviour of hazardous mineral fibres. Journal of Thermal Analysis and Calorimetry, 2016, 123, 2225-2239.	3.6	45
45	The chemical environment of iron in mineral fibres. A combined X-ray absorption and Mössbauer spectroscopic study. Journal of Hazardous Materials, 2015, 298, 282-293.	12.4	44
46	Towards a quantitative model to predict the toxicity/pathogenicity potential of mineral fibers. Toxicology and Applied Pharmacology, 2018, 361, 89-98.	2.8	41
47	Recycling of the product of thermal inertization of cement–asbestos for the production of concrete. Construction and Building Materials, 2011, 25, 3561-3569.	7.2	40
48	Removal of fluoroquinolone contaminants from environmental waters on sepiolite and its photo-induced regeneration. Chemosphere, 2016, 150, 686-693.	8.2	40
49	In vitro acellular dissolution of mineral fibres: A comparative study. Scientific Reports, 2018, 8, 7071.	3.3	40
50	Quantitative determination of the amorphous phase in plasma sprayed alumina coatings using the Rietveld method. Surface and Coatings Technology, 2006, 201, 2984-2989.	4.8	39
51	Crack formation in α-alumina supported MFI zeolite membranes studied by in situ high temperature synchrotron powder diffraction. Journal of Membrane Science, 2007, 290, 95-104.	8.2	39
52	Determination of low levels of free fibres of chrysotile in contaminated soils by X-ray diffraction and FTIR spectroscopy. Analytical and Bioanalytical Chemistry, 2003, 376, 653-658.	3.7	34
53	Quantitative phase analysis of hydraulic limes using the Rietveld method. Cement and Concrete Research, 2006, 36, 401-406.	11.0	34
54	Cronstedt's zeolite. Microporous and Mesoporous Materials, 2007, 105, 213-221.	4.4	34

#	Article	IF	Citations
55	Kinetic study of hydroxysodalite formation from natural kaolinites by time-resolved synchrotron powder diffraction. Microporous Materials, 1997, 9, 189-201.	1.6	33
56	Biodurability and release of metals during the dissolution of chrysotile, crocidolite and fibrous erionite. Environmental Research, 2019, 171, 550-557.	7.5	33
57	Wollastonite polytypes in the CaO-SiO 2 system Physics and Chemistry of Minerals, 2000, 27, 565-574.	0.8	32
58	Recycling the product of thermal transformation of cement-asbestos for the preparation of calcium sulfoaluminate clinker. Journal of Hazardous Materials, 2013, 260, 813-818.	12.4	32
59	Full quantitative phase analysis of hydrated lime using the Rietveld method. Cement and Concrete Research, 2012, 42, 1273-1279.	11.0	31
60	Frictional properties of fault zone gouges from the Jâ€FAST drilling project (<i>M_w</i> 9.0) Tj ETQq0	0	-/gyerlock 1
61	Production of nanoparticles during experimental deformation of smectite and implications for seismic slip. Earth and Planetary Science Letters, 2017, 463, 221-231.	4.4	31
62	Spectroscopic study of the product of thermal transformation of chrysotile-asbestos containing materials (ACM). European Journal of Mineralogy, 2010, 22, 535-546.	1.3	30
63	Iron from a geochemical viewpoint. Understanding toxicity/pathogenicity mechanisms in iron-bearing minerals with a special attention to mineral fibers. Free Radical Biology and Medicine, 2019, 133, 21-37.	2.9	30
64	Rietveld structure refinement of NH4-exchanged natural chabazite. European Journal of Mineralogy, 2006, 18, 351-359.	1.3	29
65	The influence of heating rate on template removal in silicalite-1: An in situ HT-XRPD study. Microporous and Mesoporous Materials, 2006, 89, 1-8.	4.4	29
66	Assessment of asbestos body formation by high resolution FEG–SEM after exposure of Sprague–Dawley rats to chrysotile, crocidolite, or erionite. Journal of Hazardous Materials, 2016, 306, 95-104.	12.4	29
67	Ambient monitoring of asbestos in selected Italian living areas. Journal of Environmental Management, 2009, 90, 3540-3552.	7.8	28
68	Influence of body composition on the technological properties and mineralogy of stoneware: A DOE and mineralogical–microstructural study. Journal of the European Ceramic Society, 2011, 31, 673-685.	5.7	28
69	Crystal chemistry of the high temperature product of transformation of cement-asbestos. Journal of Hazardous Materials, 2013, 248-249, 69-80.	12.4	28
70	Where is iron in erionite? A multidisciplinary study on fibrous erionite-Na from Jersey (Nevada, USA). Scientific Reports, 2016, 6, 37981.	3.3	28
71	Rapid and accurate quantitative phase analysis using a fast detector. Journal of Applied Crystallography, 2004, 37, 8-13.	4.5	27
72	Biological effects and comparative cytotoxicity of thermal transformed asbestos-containing materials in a human alveolar epithelial cell line. Toxicology in Vitro, 2010, 24, 1521-1531.	2.4	27

#	Article	IF	CITATIONS
73	The thermal transformation of Man Made Vitreous Fibers (MMVF) and safe recycling as secondary raw materials (SRM). Journal of Hazardous Materials, 2009, 162, 1494-1506.	12.4	26
74	Accuracy in quantitative phase analysis of mixtures with large amorphous contents. The case of stoneware ceramics and bricks. Journal of Applied Crystallography, 2014, 47, 835-846.	4.5	26
7 5	Phase transformations and reaction kinetics during the temperature-induced oxidation of natural olivine. American Mineralogist, 2003, 88, 1560-1574.	1.9	25
76	Study of NH4 + in the zeolite phillipsite by combined synchrotron powder diffraction and IR spectroscopy. Acta Crystallographica Section B: Structural Science, 2000, 56, 584-593.	1.8	23
77	Crystal chemistry of cement-asbestos. American Mineralogist, 2013, 98, 1095-1105.	1.9	23
78	Stability of mineral fibres in contact with human cell cultures. An in situ νXANES, νXRD and XRF iron mapping study. Chemosphere, 2016, 164, 547-557.	8.2	23
79	Crop evapotranspiration assessment under climate change in the Pannonian basin during 1991–2050. Meteorological Applications, 2017, 24, 84-91.	2.1	23
80	Ion exchange selectivity of phillipsite for Cs+: a structural investigation using the Rietveld method. Microporous and Mesoporous Materials, 1999, 32, 319-329.	4.4	22
81	The atomic structure of bakerite and its relationship to datolite. American Mineralogist, 2004, 89, 767-776.	1.9	22
82	Rietveld Structure Refinement of Zeolite ECR-1. Chemistry of Materials, 2006, 18, 76-84.	6.7	22
83	Recycling of the product of thermal inertization of cement-asbestos in geopolymers. Construction and Building Materials, 2012, 31, 47-51.	7.2	22
84	The order-disorder character of FeOHSO4 obtained from the thermal decomposition of metahohmannite, Fe3+2(H2O)4[O(SO4)2]. American Mineralogist, 2005, 90, 679-686.	1.9	21
85	Investigation of the Setting Reaction in Magnesium Phosphate Ceramics with Quasielastic Neutron Scattering. Journal of Physical Chemistry C, 2017, 121, 11355-11367.	3.1	21
86	Is fibrous ferrierite a potential health hazard? Characterization and comparison with fibrous erionite. American Mineralogist, 2018, 103, 1044-1055.	1.9	21
87	Effect of Grinding on Chrysotile, Amosite and Crocidolite and Implications for Thermal Treatment. Minerals (Basel, Switzerland), 2018, 8, 135.	2.0	21
88	Differential anomalous wide-angle X-ray scattering and X-ray absorption experiments to investigate the formation of glass ceramics in the CaO–SiO2–ZrO2system. Journal of Applied Crystallography, 1999, 32, 1090-1099.	4.5	20
89	Crystallization Kinetics of Bioactive Glasses in the ZnOâ^'Na ₂ Oâ^'CaOâ^'SiO ₂ System. Journal of Physical Chemistry A, 2007, 111, 8401-8408.	2.5	20
90	Climate change effects on crop evapotranspiration in the Carpathian Region from 1961 to 2010. Meteorological Applications, 2016, 23, 462-469.	2.1	20

#	Article	IF	Citations
91	Interactions between lead oxide and ceramic substrates for thick film technology. Journal of Materials Research, 1997, 12, 501-508.	2.6	19
92	In situ dehydration of yugawaralite. American Mineralogist, 2001, 86, 185-192.	1.9	19
93	Determination of the concentration of asbestos minerals in highly contaminated mine tailings: An example from abandoned mine waste of Cretaz and Emarese (Valle d'Aosta, Italy). American Mineralogist, 2014, 99, 1233-1247.	1.9	19
94	Bridging the gap between toxicity and carcinogenicity of mineral fibres by connecting the fibre crystal-chemical and physical parameters to the key characteristics of cancer. Current Research in Toxicology, 2021, 2, 42-52.	2.7	19
95	Formation of α-Eucryptite, LiAlSiO4: An In-Situ Synchrotron X-ray Powder Diffraction Study of a High Temperature Hydrothermal Synthesis. Chemistry of Materials, 2000, 12, 1473-1479.	6.7	18
96	Lead-free thick film resistors: an explorative investigation. Journal of Materials Science: Materials in Electronics, 2002, 13, 31-37.	2.2	18
97	Magnetic and nuclear structure of goethite (α-FeOOH): a neutron diffraction study. Journal of Applied Crystallography, 2014, 47, 1983-1991.	4.5	18
98	Nitrogen-modified nano-titania: True phase composition, microstructure and visible-light induced photocatalytic NO abatement. Journal of Solid State Chemistry, 2015, 231, 87-100.	2.9	18
99	Quantitative determination of chrysotile in massive serpentinites using DTA: Implications for asbestos determinations. American Mineralogist, 2011, 96, 1003-1011.	1.9	17
100	Structure Model and Toxicity of the Product of Biodissolution of Chrysotile Asbestos in the Lungs. Chemical Research in Toxicology, 2019, 32, 2063-2077.	3.3	17
101	Characterization and assessment of the potential toxicity/pathogenicity of fibrous glaucophane. Environmental Research, 2019, 178, 108723.	7.5	17
102	Rietveld structure refinement of Sr-exchanged phillipsites. Microporous and Mesoporous Materials, 1999, 31, 33-43.	4.4	16
103	Kinetic study of the drying process of clay bricks. Journal of Thermal Analysis and Calorimetry, 2016, 123, 153-167.	3.6	16
104	Structural characterization and functional correlation of Fe3O4 nanocrystals obtained using 2-ethyl-1,3-hexanediol as innovative reactive solvent in non-hydrolytic sol-gel synthesis. Materials Chemistry and Physics, 2018, 207, 337-349.	4.0	16
105	Infra Red Spectroscopy of the Regulated Asbestos Amphiboles. Minerals (Basel, Switzerland), 2018, 8, 413.	2.0	16
106	The Effect of Grinding on Tremolite Asbestos and Anthophyllite Asbestos. Minerals (Basel,) Tj ETQq0 0 0 rgBT /O	verlock 10 2.0	Tf 50 142 Td
107	Recycling of thermally treated cement-asbestos for the production of porcelain stoneware slabs. Journal of Cleaner Production, 2020, 247, 119084.	9.3	16
108	Modelling the nature of disorder in talc by simulation of X-ray powder patterns. European Journal of Mineralogy, 1999, 11, 521-532.	1.3	16

#	Article	IF	CITATIONS
109	Mullite and cristobalite formation in fired products starting from halloysitic clay. Applied Clay Science, 1992, 7, 251-262.	5.2	15
110	Quantitative phase analysis and microstructure characterization of magnetite nanocrystals obtained by microwave assisted non-hydrolytic sol–gel synthesis. Materials Characterization, 2015, 100, 88-97.	4.4	15
111	Emission of fibres and atmospheric pollutants from the thermal treatment of asbestos containing waste (ACW). Journal of Cleaner Production, 2020, 268, 122179.	9.3	15
112	Dissolution kinetics and diffusivity of silver in glassy layers for hybrid microelectronics. Journal of Materials Science: Materials in Electronics, 2004, 15, 447-453.	2.2	14
113	The structure of metahohmannite, Fe ₂ 3+0, by in situ synchrotron powder diffraction. American Mineralogist, 2004, 89, 365-370.	1.9	14
114	New insights into the toxicity of mineral fibres: A combined in situ synchrotron $1\frac{1}{4}$ -XRD and HR-TEM study of chrysotile, crocidolite, and erionite fibres found in the tissues of Sprague-Dawley rats. Toxicology Letters, 2017, 274, 20-30.	0.8	14
115	X-ray powder diffraction quantitative analysis performedin situat high temperature: application to the determination of NiO in ceramic pigments. Journal of Applied Crystallography, 1999, 32, 808-813.	4.5	13
116	The crystal chemistry of paulingite. European Journal of Mineralogy, 2001, 13, 113-119.	1.3	13
117	Seeded growth of TPA-MFI films using the fluoride route. Microporous and Mesoporous Materials, 2008, 111, 604-611.	4.4	13
118	Development of Lowâ€Firing Bâ€Fluxed Stoneware Tiles. Journal of the American Ceramic Society, 2009, 92, 2571-2577.	3.8	13
119	XANES study of the local environment of iron in natural kaolinites. European Journal of Mineralogy, 2000, 12, 17-23.	1.3	13
120	A solution for the full impregnation of asbestos: The use of an epoxy polymer resin. Journal of Applied Polymer Science, 2000, 75, 713-720.	2.6	12
121	Devitrification kinetics of high lead glass for hybrid microelectronics. Solid State Sciences, 2001, 3, 667-674.	0.7	12
122	Mineralogical and Optical Characterization of SiO ₂ â€, Nâ€, and SiO ₂ /Nâ€Coâ€Doped Titania Nanopowders. Journal of the American Ceramic Society, 2012, 95, 1709-1716.	3.8	12
123	Mechanism of lustre formation in scheelite-based glazes. Journal of the European Ceramic Society, 2013, 33, 2055-2064.	5.7	12
124	Assessment of the potential hazard represented by natural raw materials containing mineral fibresâ€"The case of the feldspar from Orani, Sardinia (Italy). Journal of Hazardous Materials, 2018, 350, 76-87.	12.4	12
125	Determination of Nickel(II) Oxide in Ceramic Pigments by In Situ Xâ€ray Diffraction Quantitative Analysis. Journal of the American Ceramic Society, 1999, 82, 2566-2568.	3.8	11
126	The structure of K-hydrosodalite. Microporous and Mesoporous Materials, 2006, 96, 276-286.	4.4	11

#	Article	IF	CITATIONS
127	Direnzoite, [NaK6MgCa2(Al13Si47O120){middle dot}36H2O], a new zeolite from Massif Central (France): Description and crystal structure. American Mineralogist, 2008, 93, 95-102.	1.9	11
128	Influence of sol counter-ions on the anatase-to-rutile phase transformation and microstructure of nanocrystalline TiO ₂ . CrystEngComm, 2015, 17, 1813-1825.	2.6	11
129	In vitro toxicity of fibrous glaucophane. Toxicology, 2021, 454, 152743.	4.2	11
130	Interactions between bismuth oxide and ceramic substrates for thick film technology. Journal of Materials Research, 1998, 13, 1865-1874.	2.6	10
131	The thermal stability of sideronatrite and its decomposition products in the system Na2O–Fe2O3–SO2–H2O. Physics and Chemistry of Minerals, 2013, 40, 659-670.	0.8	10
132	Accuracy in quantitative phase analysis of mixtures with large amorphous contents. The case of zircon-rich sanitary-ware glazes. Journal of Applied Crystallography, 2014, 47, 136-145.	4.5	10
133	Characterization and assessment of the potential toxicity/pathogenicity of Russian commercial chrysotile. American Mineralogist, 2021, 106, 1606-1621.	1.9	10
134	In situ high-temperature synchrotron powder diffraction study of the thermal decomposition of cement-asbestos. Powder Diffraction, 2008, 23, 323-328.	0.2	9
135	In vitro biodurability of the product of thermal transformation of cement–asbestos. Journal of Hazardous Materials, 2012, 205-206, 63-71.	12.4	9
136	In situ high-temperature XRD and FTIR investigation of hohmannite, a water-rich Fe-sulfate, and its decomposition products. Journal of Thermal Analysis and Calorimetry, 2015, 119, 1793-1802.	3.6	9
137	Characterisation of fibrous ferrierite in the rhyolitic tuffs at Lovelock, Nevada, USA. Mineralogical Magazine, 2019, 83, 577-586.	1.4	9
138	Occurrence and characterization of tremolite asbestos from the Mid Atlantic Ridge. Scientific Reports, 2021, 11, 6285.	3.3	9
139	Acute cytotoxicity of mineral fibres observed by time-lapse video microscopy. Toxicology, 2022, 466, 153081.	4.2	9
140	Chromium crystal chemistry mullite–spinel refractory ceramics. Materials Research Bulletin, 1999, 34, 711-720.	5.2	8
141	Formation of tubular carbonate conduits at Athina mud volcano, eastern Mediterranean Sea. Marine and Petroleum Geology, 2019, 107, 20-31.	3.3	8
142	Experimental quantification of the Fe-valence state at amosite-asbestos boundaries using acSTEM dual-electron energy-loss spectroscopy. American Mineralogist, 2019, 104, 1820-1828.	1.9	8
143	The concept of $\hat{a}\in \mathbb{R}$ and recycling of hazardous materials: in depth characterization of the product of thermal transformation of cement-asbestos. Mineralogical Magazine, 2014, 78, 1177-1191.	1.4	7
144	Crystal structure determination of a lifelong biopersistent asbestos fibre using single-crystal synchrotron X-ray micro-diffraction. IUCrJ, 2021, 8, 76-86.	2.2	7

#	Article	IF	CITATIONS
145	Management of Asbestos Containing Materials: A Detailed LCA Comparison of Different Scenarios Comprising First Time Asbestos Characterization Factor Proposal. Environmental Science & Emp; Technology, 2021, 55, 12672-12682.	10.0	7
146	Depicting the crystal structure of fibrous ferrierite from British Columbia using a combined synchrotron techniques approach. Journal of Applied Crystallography, 2019, 52, 1397-1408.	4.5	7
147	Characterisation of potentially toxic natural fibrous zeolites by means of electron paramagnetic resonance spectroscopy and morphological-mineralogical studies. Chemosphere, 2022, 291, 133067.	8.2	7
148	Ion exchange selectivity of phillipsite. Studies in Surface Science and Catalysis, 2002, , 1705-1712.	1.5	6
149	Naturally Occurring Asbestos: A Global Health Concern? State of the Art and Open Issues. Environmental and Engineering Geoscience, 2020, 26, 3-8.	0.9	6
150	The Acute Toxicity of Mineral Fibres: A Systematic In Vitro Study Using Different THP-1 Macrophage Phenotypes. International Journal of Molecular Sciences, 2022, 23, 2840.	4.1	6
151	Accurate measurement of the thermal expansion of MFI zeolite membranes by in situ HTXRPD. Studies in Surface Science and Catalysis, 2004, 154, 703-709.	1.5	5
152	Crystal structure of Na3Fe(SO4)3: A high-temperature product (Â400 ÂC) of sideronatrite [Na2Fe(SO4)2OH{middle dot}3H2O]. American Mineralogist, 2011, 96, 1107-1111.	1.9	5
153	Anisotropy of green stoneware evaluated by ultrasound measurements in combination with texture analyses. Journal of the European Ceramic Society, 2013, 33, 2785-2792.	5.7	5
154	Raw and thermally treated cement asbestos exerts different cytotoxicity effects on A549 cells in vitro. Acta Histochemica, 2015, 117, 29-39.	1.8	5
155	Synchrotron Nano-Diffraction Study of Thermally Treated Asbestos Tremolite from Val d'Ala, Turin (Italy). Minerals (Basel, Switzerland), 2018, 8, 311.	2.0	5
156	Human Health Hazards Associated with Asbestos in Building Materials. , 2022, , 297-325.		5
157	Lung Cancer: Mechanisms of Carcinogenesis by Asbestos. , 2020, , 239-256.		5
158	Structure and stability of BaTiSi ₂ O ₇ . Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2015, 71, 153-163.	1.1	4
159	Progress in mineralogical quantitative analysis of rock samples: application to quartzites from Denali National Park, Alaska Range (USA). Powder Diffraction, 2016, 31, 31-39.	0.2	4
160	Al-Substituted Tobermorites: An Effective Cation Exchanger Synthesized from "End-of-Waste― Materials. ACS Omega, 2022, 7, 1694-1702.	3.5	4
161	Characterization of Fibrous Wollastonite NYAD G in View of Its Use as Negative Standard for In Vitro Toxicity Tests. Minerals (Basel, Switzerland), 2021, 11, 1378.	2.0	4
162	A new method for the detection of low levels of free fibres of chrysotile in contaminated soils by X-ray powder diffraction. Journal of Environmental Monitoring, 2003, 5, 654.	2.1	3

#	Article	IF	CITATIONS
163	Annealing effects on plasma-sprayed Ni: An XRPD study. Surface and Coatings Technology, 2008, 203, 345-349.	4.8	3
164	In situ high-temperature X-ray diffraction and spectroscopic study of fibroferrite, FeOH(SO4)·5H2O. Physics and Chemistry of Minerals, 2016, 43, 587-595.	0.8	3
165	Sharing different perspectives to understand asbestosâ€induced carcinogenesis: A comment to Jiang <i>etÂal</i> . (2016). Cancer Science, 2017, 108, 156-157.	3.9	3
166	A Systematic Study of the Cryogenic Milling of Chrysotile Asbestos. Applied Sciences (Switzerland), 2021, 11, 4826.	2.5	3
167	Crystal chemistry of clinker relicts from aged cementitious materials. Journal of Applied Crystallography, 2014, 47, 1626-1637.	4.5	3
168	Facile synthesis of B-type carbonated nanoapatite with tailored microstructure. Journal of Solid State Chemistry, 2014, 220, 60-69.	2.9	2
169	In situsynchrotron powder diffraction study of the thermal decomposition of cement-asbestos: Preliminary results. Zeitschrift Fýr Kristallographie, Supplement, 2009, 2009, 353-358.	0.5	2
170	Oligocene-Miocene volcanism in the Apennines: discovery and characterization of a baryte and Ba-rich phillipsite bed in the lower part of the Ranzano Formation (Reggio Emilia, Italy). Italian Journal of Geosciences, 2020, 139, 287-299.	0.8	2
171	Exploring the Damage Limitation Possibilities of Mineral Fibres for Future Integrated Solutions: An in Vitro Study. International Journal of Artificial Organs, 2003, 26, 73-79.	1.4	1
172	The comparison of the crystal structures of direnzoite, a new zeolite from Massif Central (France), and its synthetic counterpart ECR-1. Studies in Surface Science and Catalysis, 2008, , 499-504.	1.5	1
173	WebFPTI: A tool to predict the toxicity/pathogenicity of mineral fibres including asbestos. Earth Science Informatics, 0, , $1\cdot$	3.2	1
174	The Rietveld structure refinement of an exceptionally pure sample of clinoptilolite from Ecuador and its Na-, K-, and Ca-exchanged forms. Zeitschrift Für Kristallographie, Supplement, 2009, 2009, 395-400.	0.5	1
175	Letter to the Editor: Comments on the paper of Wylie and Korchevskiy - Carcinogenicity of fibrous glaucophane: How should we fill the data gaps?. Current Research in Toxicology, 2022, 3, 100063.	2.7	1
176	Synthesis of zeolite LTA films in the presence of nucleation suppressors. Studies in Surface Science and Catalysis, 2008, , 649-652.	1.5	0
177	In situ study of dehydration of ECR1: Na-as synthesized and NH4-exchanged in comparison. Studies in Surface Science and Catalysis, 2008, , 901-904.	1.5	0