List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/450907/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Increasing Obstacle Distances Task on Postural Stability Variables During Gait Initiation in Older Nonfallers and Fallers. Archives of Physical Medicine and Rehabilitation, 2022, 103, 2303-2310.	0.9	1
2	A neuromuscular model of human locomotion combines spinal reflex circuits with voluntary movements. Scientific Reports, 2022, 12, 8189.	3.3	7
3	Effects of purposeful soccer heading on circulating small extracellular vesicle concentration and cargo. Journal of Sport and Health Science, 2021, 10, 122-130.	6.5	9
4	Persistent Visual and Vestibular Impairments for Postural Control Following Concussion: A Cross-Sectional Study in University Students. Sports Medicine, 2021, 51, 2209-2220.	6.5	13
5	Foot and ankle somatosensory deficits in children with cerebral palsy: A pilot study. Journal of Pediatric Rehabilitation Medicine, 2021, 14, 247-255.	0.5	4
6	Sensory Reweighting for Upright Stance in Soccer Players: A Comparison of High and Low Exposure to Soccer Heading. Journal of Neurotrauma, 2020, 37, 2656-2663.	3.4	8
7	Flexible Recruitment of Balance Mechanisms to Environmental Constraints During Walking. Frontiers in Virtual Reality, 2020, 1, .	3.7	3
8	Interactions Between Different Age-Related Factors Affecting Balance Control in Walking. Frontiers in Sports and Active Living, 2020, 2, 94.	1.8	13
9	Age of First Exposure to Soccer Heading and Sensory Reweighting for Upright Stance. International Journal of Sports Medicine, 2020, 41, 616-627.	1.7	5
10	Foot and Ankle Somatosensory Deficits Affect Balance and Motor Function in Children With Cerebral Palsy. Frontiers in Human Neuroscience, 2020, 14, 45.	2.0	32
11	Anterior fall-recovery training applied to individuals with chronic stroke. Clinical Biomechanics, 2019, 69, 205-214.	1.2	8
12	Interdependence of balance mechanisms during bipedal locomotion. PLoS ONE, 2019, 14, e0225902.	2.5	27
13	Walking Cadence Affects the Recruitment of the Medial-Lateral Balance Mechanisms. Frontiers in Sports and Active Living, 2019, 1, 40.	1.8	20
14	Reliability and Fall Risk Detection for the BESTest and Mini-BESTest in Older Adults. Journal of Geriatric Physical Therapy, 2019, 42, 81-85.	1.1	30
15	Phase-Dependency of Medial-Lateral Balance Responses to Sensory Perturbations During Walking. Frontiers in Sports and Active Living, 2019, 1, 25.	1.8	14
16	Sensory Reweighting: A Rehabilitative Mechanism?. , 2019, , 789-800.		0
17	Trunk motion visual feedback during walking improves dynamic balance in older adults: Assessor blinded randomized controlled trial. Gait and Posture, 2018, 62, 342-348.	1.4	15
18	Strategies for the Control of Balance During Locomotion. Kinesiology Review, 2018, 7, 18-25.	0.6	86

#	Article	IF	CITATIONS
19	Sensory-Challenge Balance Exercises Improve Multisensory Reweighting in Fall-Prone Older Adults. Journal of Neurologic Physical Therapy, 2018, 42, 84-93.	1.4	18
20	Influences of Age, Obesity, and Adverse Drug Effects on Balance and Mobility Testing Scores in Ambulatory Older Adults. Journal of Geriatric Physical Therapy, 2018, 41, 218-229.	1.1	18
21	Visual biofeedback training reduces quantitative drugs index scores associated with fall risk. BMC Research Notes, 2018, 11, 750.	1.4	1
22	Stochastic resonance stimulation improves balance in children with cerebral palsy: a case control study. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 115.	4.6	27
23	Neural Control of Balance During Walking. Frontiers in Physiology, 2018, 9, 1271.	2.8	84
24	A Tool to Quantify the Functional Impact of Oscillopsia. Frontiers in Neurology, 2018, 9, 142.	2.4	21
25	Light touch compensates peripheral somatosensory degradation in postural control of older adults. Human Movement Science, 2018, 60, 122-130.	1.4	9
26	Vestibular Dysfunction after Subconcussive Head Impact. Journal of Neurotrauma, 2017, 34, 8-15.	3.4	55
27	Eye Movements Are Correctly Timed During Walking Despite Bilateral Vestibular Hypofunction. JARO - Journal of the Association for Research in Otolaryngology, 2017, 18, 591-600.	1.8	14
28	Spatiotemporal gait changes with use of an arm swing cueing device in people with Parkinson's disease. Gait and Posture, 2017, 58, 46-51.	1.4	23
29	Loss of Peripheral Sensory Function Explains Much of the Increase in Postural Sway in Healthy Older Adults. Frontiers in Aging Neuroscience, 2017, 9, 202.	3.4	50
30	Complementary mechanisms for upright balance during walking. PLoS ONE, 2017, 12, e0172215.	2.5	63
31	Identification of the Unstable Human Postural Control System. Frontiers in Systems Neuroscience, 2016, 10, 22.	2.5	25
32	A central processing sensory deficit with Parkinson's disease. Experimental Brain Research, 2016, 234, 2369-2379.	1.5	55
33	Development of adaptive sensorimotor control in infant sitting posture. Gait and Posture, 2016, 45, 157-163.	1.4	7
34	Using a System Identification Approach to Investigate Subtask Control during Human Locomotion. Frontiers in Computational Neuroscience, 2016, 10, 146.	2.1	13
35	Perspectives on Aging Vestibular Function. Frontiers in Neurology, 2015, 6, 269.	2.4	51
36	Asymmetric Sensory Reweighting in Human Upright Stance. PLoS ONE, 2014, 9, e100418.	2.5	23

#	Article	IF	CITATIONS
37	Function dictates the phase dependence of vision during human locomotion. Journal of Neurophysiology, 2014, 112, 165-180.	1.8	55
38	Explicit and implicit knowledge of environment states induce adaptation in postural control. Neuroscience Letters, 2014, 566, 6-10.	2.1	17
39	Sensorimotor Recalibration in Virtual Environments. Virtual Reality Technologies for Health and Clinical Applications, 2014, , 71-94.	0.8	3
40	Dynamic Reweighting of Three Modalities for Sensor Fusion. PLoS ONE, 2014, 9, e88132.	2.5	82
41	Visual feedback during treadmill walking improves balance for older adults: A preliminary report. , 2013, , .		5
42	Does visual feedback during walking result in similar improvements in trunk control for young and older healthy adults?. Journal of NeuroEngineering and Rehabilitation, 2013, 10, 110.	4.6	14
43	Dynamics of inter-modality re-weighting during human postural control. Experimental Brain Research, 2012, 223, 99-108.	1.5	42
44	Development of Multisensory Reweighting Is Impaired for Quiet Stance Control in Children with Developmental Coordination Disorder (DCD). PLoS ONE, 2012, 7, e40932.	2.5	37
45	Visual Flow Is Interpreted Relative to Multisegment Postural Control. Journal of Motor Behavior, 2011, 43, 237-246.	0.9	13
46	Children with Developmental Coordination Disorder benefit from using vision in combination with touch information for quiet standing. Gait and Posture, 2011, 34, 183-190.	1.4	45
47	Navigating sensory conflict in dynamic environments using adaptive state estimation. Biological Cybernetics, 2011, 105, 291-304.	1.3	10
48	Postural control in a bipedal robot using sensory reweighting. , 2011, , .		1
49	Identification of Neural Feedback for Upright Stance in Humans: Stabilization rather than Sway Minimization. Journal of Neuroscience, 2011, 31, 15144-15153.	3.6	112
50	The many roles of vision during walking. Experimental Brain Research, 2010, 206, 337-350.	1.5	79
51	The Dynamics of Visual Reweighting in Healthy and Fall-Prone Older Adults. Journal of Motor Behavior, 2010, 42, 197-208.	0.9	98
52	Sensory Reweighting: A Rehabilitative Mechanism?. , 2010, , 519-529.		3
53	Optimal motor control may mask sensory dynamics. Biological Cybernetics, 2009, 101, 35-42.	1.3	3
54	Coherence analysis of muscle activity during quiet stance. Experimental Brain Research, 2008, 185, 215-226.	1.5	60

JOHN J JEKA

#	Article	IF	CITATIONS
55	The development of infant upright posture: sway less or sway differently?. Experimental Brain Research, 2008, 186, 293-303.	1.5	48
56	Asymmetric adaptation with functional advantage in human sensorimotor control. Experimental Brain Research, 2008, 191, 453-463.	1.5	61
57	Identification of the Plant for Upright Stance in Humans: Multiple Movement Patterns From a Single Neural Strategy. Journal of Neurophysiology, 2008, 100, 3394-3406.	1.8	96
58	The role of vestibular and somatosensory systems in intersegmental control of upright stance. Journal of Vestibular Research: Equilibrium and Orientation, 2008, 18, 39-49.	2.0	48
59	Susceptibility genes for gentamicin-induced vestibular dysfunction. Journal of Vestibular Research: Equilibrium and Orientation, 2008, 18, 59-68.	2.0	14
60	The role of vestibular and somatosensory systems in intersegmental control of upright stance. Journal of Vestibular Research: Equilibrium and Orientation, 2008, 18, 39-49.	2.0	23
61	The influence of sensory information on two-component coordination during quiet stance. Gait and Posture, 2007, 26, 263-271.	1.4	48
62	Control and Estimation of Posture During Quiet Stance Depends on Multijoint Coordination. Journal of Neurophysiology, 2007, 97, 3024-3035.	1.8	249
63	Two steps forward and one back: Learning to walk affects infants' sitting posture. , 2007, 30, 16-25.		34
64	Development of multisensory reweighting for posture control in children. Experimental Brain Research, 2007, 183, 435-446.	1.5	89
65	Susceptibility genes for gentamicinâ€induced vestibular dysfunction. FASEB Journal, 2007, 21, A415.	0.5	1
66	Modeling the Dynamics of Sensory Reweighting. Biological Cybernetics, 2006, 95, 123-134.	1.3	107
67	Sensory reweighting with translational visual stimuli in young and elderly adults: the role of state-dependent noise. Experimental Brain Research, 2006, 174, 517-527.	1.5	56
68	Multisensory reweighting of vision and touch is intact in healthy and fall-prone older adults. Experimental Brain Research, 2006, 175, 342-352.	1.5	87
69	Slow Dynamics of Postural Sway Are in the Feedback Loop. Journal of Neurophysiology, 2006, 95, 1410-1418.	1.8	105
70	Nonlinear postural control in response to visual translation. Experimental Brain Research, 2005, 160, 450-459.	1.5	48
71	Comparing internal models of the dynamics of the visual environment. Biological Cybernetics, 2005, 92, 147-163.	1.3	41
72	A unified view of quiet and perturbed stance: simultaneous co-existing excitable modes. Neuroscience Letters, 2005, 377, 75-80.	2.1	232

#	Article	IF	CITATIONS
73	Controlling Human Upright Posture: Velocity Information Is More Accurate Than Position or Acceleration. Journal of Neurophysiology, 2004, 92, 2368-2379.	1.8	234
74	Noise Associated with the Process of Fusing Multisensory Information. Understanding Complex Systems, 2004, , 123-139.	0.6	0
75	Postural control in children. Experimental Brain Research, 2003, 150, 434-442.	1.5	94
76	Multisensory fusion: simultaneous re-weighting of vision and touch for the control of human posture. Cognitive Brain Research, 2002, 14, 164-176.	3.0	304
77	Behavioral and electrocortical evidence of an interaction between probability and task metrics in movement preparation. Experimental Brain Research, 2002, 144, 303-313.	1.5	33
78	Limited control strategies with the loss of vestibular function. Experimental Brain Research, 2002, 145, 323-333.	1.5	67
79	Multisensory fusion and the stochastic structure of postural sway. Biological Cybernetics, 2002, 87, 262-277.	1.3	167
80	Vestibulospinal Control of Posture. Advances in Experimental Medicine and Biology, 2002, 508, 139-145.	1.6	31
81	Human multisensory fusion of vision and touch: detecting non-linearity with small changes in the sensory environment. Neuroscience Letters, 2001, 315, 113-116.	2.1	36
82	Input-driven behavior: One extreme of the multisensory perceptual continuum. Behavioral and Brain Sciences, 2001, 24, 232-233.	0.7	0
83	Multisensory information for human postural control: integrating touch and vision. Experimental Brain Research, 2000, 134, 107-125.	1.5	154
84	Precision contact of the fingertip reduces postural sway of individuals with bilateral vestibular loss. Experimental Brain Research, 1999, 126, 459-466.	1.5	165
85	The use of somatosensory information during the acquisition of independent upright stance. , 1999, 22, 87-102.		73
86	The Structure of Somatosensory information for Human Postural Control. Motor Control, 1998, 2, 13-33.	0.6	40
87	Position and Velocity Coupling of Postural Sway to Somatosensory Drive. Journal of Neurophysiology, 1998, 79, 1661-1674.	1.8	180
88	Light Touch Contact as a Balance Aid. Physical Therapy, 1997, 77, 476-487.	2.4	245
89	Haptic cues for orientation and postural control. Perception & Psychophysics, 1996, 58, 409-423.	2.3	116
90	Manipulating symmetry in the coordination dynamics of human movement Journal of Experimental Psychology: Human Perception and Performance, 1995, 21, 360-374.	0.9	125

ЈΟΗΝ **ЈЈ**ΕΚΑ

#	Article	IF	CITATIONS
91	Is Servo-Theory the Language of Human Postural Control?. Ecological Psychology, 1995, 7, 321-327.	1.1	7
92	Fingertip contact influences human postural control. Experimental Brain Research, 1994, 100, 495-502.	1.5	463
93	Pattern switching in human multilimb coordination dynamics. Bulletin of Mathematical Biology, 1993, 55, 829-845.	1.9	35
94	Spontaneous transitions and symmetry: Pattern dynamics in human four-limb coordination. Human Movement Science, 1993, 12, 627-651.	1.4	56
95	The Dynamic Pattern Approach to Coordinated Behavior: A Tutorial Review. Advances in Psychology, 1989, , 3-45.	0.1	32