
Leonard Moise

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4507442/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of a Human T Cell-Targeted Multi-Epitope Vaccine for Q Fever in Animal Models of Coxiella burnetii Immunity. Frontiers in Immunology, 2022, 13, .	4.8	7
2	Novel H7N9 influenza immunogen design enhances mobilization of seasonal influenza T cell memory in H3N2 pre-immune mice. Human Vaccines and Immunotherapeutics, 2022, 18, .	3.3	0
3	Self-Replicating RNAs Drive Protective Anti-tumor T Cell Responses to Neoantigen Vaccine Targets in a Combinatorial Approach. Molecular Therapy, 2021, 29, 1186-1198.	8.2	14
4	Quantifying the Persistence of Vaccine-Related T Cell Epitopes in Circulating Swine Influenza A Strains from 2013–2017. Vaccines, 2021, 9, 468.	4.4	3
5	Identification, Selection and Immune Assessment of Liver Stage CD8 T Cell Epitopes From Plasmodium falciparum. Frontiers in Immunology, 2021, 12, 684116.	4.8	0
6	Highly conserved, non-human-like, and cross-reactive SARS-CoV-2 T cell epitopes for COVID-19 vaccine design and validation. Npj Vaccines, 2021, 6, 71.	6.0	23
7	Bridging Computational Vaccinology and Vaccine Development Through Systematic Identification, Characterization, and Downselection of Conserved and Variable Circumsporozoite Protein CD4 T Cell Epitopes From Diverse Plasmodium falciparum Strains. Frontiers in Immunology, 2021, 12, 689920.	4.8	3
8	Identification and Immune Assessment of T Cell Epitopes in Five Plasmodium falciparum Blood Stage Antigens to Facilitate Vaccine Candidate Selection and Optimization. Frontiers in Immunology, 2021, 12, 690348.	4.8	4
9	Immune escape and immune camouflage may reduce the efficacy of RTS,S vaccine in Malawi. Human Vaccines and Immunotherapeutics, 2020, 16, 214-227.	3.3	17
10	Exploit T cell Immunity for Rapid, Safe and Effective COVID-19 Vaccines. Expert Review of Vaccines, 2020, 19, 781-784.	4.4	1
11	Immune-engineered H7N9 influenza hemagglutinin improves protection against viral influenza virus challenge. Human Vaccines and Immunotherapeutics, 2020, 16, 2042-2050.	3.3	7
12	New Immunoinformatics Tools for Swine: Designing Epitope-Driven Vaccines, Predicting Vaccine Efficacy, and Making Vaccines on Demand. Frontiers in Immunology, 2020, 11, 563362.	4.8	9
13	Better Epitope Discovery, Precision Immune Engineering, and Accelerated Vaccine Design Using Immunoinformatics Tools. Frontiers in Immunology, 2020, 11, 442.	4.8	78
14	Coxiella burnetii Epitope-Specific T-Cell Responses in Patients with Chronic Q Fever. Infection and Immunity, 2019, 87, .	2.2	10
15	Multi-antigen Vaccination With Simultaneous Engagement of the OX40 Receptor Delays Malignant Mesothelioma Growth and Increases Survival in Animal Models. Frontiers in Oncology, 2019, 9, 720.	2.8	7
16	Highly conserved influenza T cell epitopes induce broadly protective immunity. Vaccine, 2019, 37, 5371-5381.	3.8	39
17	A prime-boost concept using a T-cell epitope-driven DNA vaccine followed by a whole virus vaccine effectively protected pigs in the pandemic H1N1 pig challenge model. Vaccine, 2019, 37, 4302-4309.	3.8	14
18	Promiscuous Coxiella burnetii CD4 Epitope Clusters Associated With Human Recall Responses Are Candidates for a Novel T-Cell Targeted Multi-Epitope Q Fever Vaccine. Frontiers in Immunology, 2019, 10, 207.	4.8	33

#	Article	IF	CITATIONS
19	Abstract B089: Application of precision cancer immunotherapy design tools to bladder cancer: Non-self-like neoepitopes as a prognostic biomarker. , 2019, , .		0
20	Abstract 943: Filtering out self-like neoantigens improves immune response to cancer vaccines. Cancer Research, 2019, 79, 943-943.	0.9	2
21	Abstract 943: Filtering out self-like neoantigens improves immune response to cancer vaccines. , 2019, , .		Ο
22	T cell epitope engineering: an avian H7N9 influenza vaccine strategy for pandemic preparedness and response. Human Vaccines and Immunotherapeutics, 2018, 14, 2203-2207.	3.3	10
23	Abstract 5311: Integrated approaches for design of precision cancer immunotherapies: Selection of Class I and Class II T cell neo-epitopes and removal of Treg epitopes. , 2018, , .		Ο
24	A humanized mouse model identifies key amino acids for low immunogenicity of H7N9 vaccines. Scientific Reports, 2017, 7, 1283.	3.3	35
25	An immunoinformatics-derived DNA vaccine encoding human class II T cell epitopes of Ebola virus, Sudan virus, and Venezuelan equine encephalitis virus is immunogenic in HLA transgenic mice. Human Vaccines and Immunotherapeutics, 2017, 13, 2824-2836.	3.3	21
26	T ell epitope content comparison (Epi <scp>CC</scp>) of swine H1 influenza A virus hemagglutinin. Influenza and Other Respiratory Viruses, 2017, 11, 531-542.	3.4	15
27	Abstract 4540: MiVax: an innovative cancer neoantigen prediction system. , 2017, , .		0
28	In Vivo Validation of Predicted and Conserved T Cell Epitopes in a Swine Influenza Model. PLoS ONE, 2016, 11, e0159237.	2.5	31
29	Immune Profiling of Coxiella burnetii Infection by Mass Cytometry. Open Forum Infectious Diseases, 2016, 3, .	0.9	0
30	Agility in adversity: Vaccines on Demand. Expert Review of Vaccines, 2016, 15, 1087-1091.	4.4	6
31	T cell epitope redundancy: cross-conservation of the TCR face between pathogens and self and its implications for vaccines and autoimmunity. Expert Review of Vaccines, 2016, 15, 607-617.	4.4	28
32	Abstract A018: High-value T cell epitope selection for mutanome-directed cancer immunotherapy using an innovative cancer neo-epitope classification system. , 2016, , .		0
33	Structure-based redesign of lysostaphin yields potent antistaphylococcal enzymes that evade immune cell surveillance. Molecular Therapy - Methods and Clinical Development, 2015, 2, 15021.	4.1	45
34	Development and validation of an epitope prediction tool for swine (PigMatrix) based on the pocket profile method. BMC Bioinformatics, 2015, 16, 290.	2.6	16
35	Novel Methods for Addressing Immunogenicity of Therapeutic Enzymes. AAPS Advances in the Pharmaceutical Sciences Series, 2015, , 63-77.	0.6	2
36	C3d adjuvant effects are mediated through the activation of C3dâ€specific autoreactive T cells. Immunology and Cell Biology, 2015, 93, 189-197.	2.3	21

#	Article	IF	CITATIONS
37	An immunoinformatic approach for identification of Trypanosoma cruzi HLA-A2-restricted CD8 ⁺ T cell epitopes. Human Vaccines and Immunotherapeutics, 2015, 11, 2322-2328.	3.3	12
38	H7N9 T-cell epitopes that mimic human sequences are less immunogenic and may induce Treg-mediated tolerance. Human Vaccines and Immunotherapeutics, 2015, 11, 2241-2252.	3.3	40
39	iVAX: An integrated toolkit for the selection and optimization of antigens and the design of epitope-driven vaccines. Human Vaccines and Immunotherapeutics, 2015, 11, 2312-2321.	3.3	83
40	Su1829 Bloinformatic Approach to Mapping Global H. pylori cagA Sequences for Targeted Vaccine Development. Gastroenterology, 2015, 148, S-528.	1.3	0
41	Time for T? Immunoinformatics addresses vaccine design for neglected tropical and emerging infectious diseases. Expert Review of Vaccines, 2015, 14, 21-35.	4.4	35
42	Preclinical development of HIvax: Human survivin highly immunogenic vaccines. Human Vaccines and Immunotherapeutics, 2015, 11, 1585-1595.	3.3	14
43	Cross-conservation of T-cell epitopes. Human Vaccines and Immunotherapeutics, 2014, 10, 256-262.	3.3	22
44	VaxCelerate II: Rapid development of a self-assembling vaccine for Lassa fever. Human Vaccines and Immunotherapeutics, 2014, 10, 3022-3038.	3.3	23
45	A High Throughput MHC II Binding Assay for Quantitative Analysis of Peptide Epitopes. Journal of Visualized Experiments, 2014, , .	0.3	16
46	Smarter vaccine design will circumvent regulatory T cell-mediated evasion in chronic HIV and HCV infection. Frontiers in Microbiology, 2014, 5, 502.	3.5	13
47	Partial pathogen protection by tick-bite sensitization and epitope recognition in peptide-immunized HLA DR3 transgenic mice. Human Vaccines and Immunotherapeutics, 2014, 10, 3048-3059.	3.3	6
48	Immune camouflage: Relevance to vaccines and human immunology. Human Vaccines and Immunotherapeutics, 2014, 10, 3570-3575.	3.3	39
49	CHOPPI: A web tool for the analysis of immunogenicity risk from host cell proteins in CHOâ€based protein production. Biotechnology and Bioengineering, 2014, 111, 2170-2182.	3.3	47
50	Integrated assessment of predicted MHC binding and cross-conservation with self reveals patterns of viral camouflage. BMC Bioinformatics, 2014, 15, S1.	2.6	34
51	Human Immune Responses to H. pylori HLA Class II Epitopes Identified by Immunoinformatic Methods. PLoS ONE, 2014, 9, e94974.	2.5	16
52	Sa1874 Selection, Identification and Validation of a Panel of Immunogenic H. pylori Peptides. Gastroenterology, 2013, 144, S-325.	1.3	0
53	In Vitro and In Vivo Studies of IgG-derived Treg Epitopes (Tregitopes): A Promising New Tool for Tolerance Induction and Treatment of Autoimmunity. Journal of Clinical Immunology, 2013, 33, 43-49.	3.8	61
54	Epitope Recognition in HLA-DR3 Transgenic Mice Immunized to TSH-R Protein or Peptides. Endocrinology, 2013, 154, 2234-2243.	2.8	10

#	Article	IF	CITATIONS
55	Making vaccines "on demand― Human Vaccines and Immunotherapeutics, 2013, 9, 1877-1884.	3.3	19
56	Immunization with cross-conserved H1N1 influenza CD4+T-cell epitopes lowers viral burden in HLA DR3 transgenic mice. Human Vaccines and Immunotherapeutics, 2013, 9, 2060-2068.	3.3	24
57	Low immunogenicity predicted for emerging avian-origin H7N9. Human Vaccines and Immunotherapeutics, 2013, 9, 950-956.	3.3	78
58	Universal H1N1 influenza vaccine development. Human Vaccines and Immunotherapeutics, 2013, 9, 1598-1607.	3.3	23
59	The two-faced T cell epitope. Human Vaccines and Immunotherapeutics, 2013, 9, 1577-1586.	3.3	88
60	Moving <i>Helicobacter pylori</i> vaccine development forward with bioinformatics and immunomics. Expert Review of Vaccines, 2012, 11, 1031-1033.	4.4	9
61	Immunoinformatic analysis of Chinese hamster ovary (CHO) protein contaminants in therapeutic protein formulations. , 2012, , .		0
62	Of [hamsters] and men. Human Vaccines and Immunotherapeutics, 2012, 8, 1172-1174.	3.3	36
63	Design and analysis of immune-evading enzymes for ADEPT therapy. Protein Engineering, Design and Selection, 2012, 25, 613-624.	2.1	36
64	Conservation of HIV-1 T cell epitopes across time and clades: Validation of immunogenic HLA-A2 epitopes selected for the GAIA HIV vaccine. Vaccine, 2012, 30, 7547-7560.	3.8	13
65	Further confirmation of broadly conserved, highly immunogenic cross-clade HIV CTL epitopes for inclusion in the GAIA HIV vaccine. Retrovirology, 2012, 9, .	2.0	Ο
66	Effect of HLA DR epitope de-immunization of Factor VIII in vitro and in vivo. Clinical Immunology, 2012, 142, 320-331.	3.2	68
67	Reducing Protein Immunogenicity by Design: Deimmunization and Tolerance Induction. , 2012, , 525-534.		Ο
68	Bioimmunoinformatic Approach to Mine H. pylori Genomes for Targeted Vaccine Development. Gastroenterology, 2011, 140, S-58.	1.3	0
69	<i>H. pylori</i> vaccines. Hum Vaccin, 2011, 7, 1153-1157.	2.4	17
70	VennVax, a DNA-prime, peptide-boost multi-T-cell epitope poxvirus vaccine, induces protective immunity against vaccinia infection by T cell response alone. Vaccine, 2011, 29, 501-511.	3.8	49
71	HelicoVax: Epitope-based therapeutic Helicobacter pylori vaccination in a mouse model. Vaccine, 2011, 29, 2085-2091.	3.8	64
72	Coupling sensitive in vitro and in silico techniques to assess cross-reactive CD4+ T cells against the swine-origin H1N1 influenza virus. Vaccine, 2011, 29, 3299-3309.	3.8	51

#	Article	IF	CITATIONS
73	A comparison of two methods for T cell epitope mapping: ?cell free? in vitro versus immunoinformatics. Immunome Research, 2011, 7, .	0.1	10
74	Harnessing the power of genomics and immunoinformatics to produce improved vaccines. Expert Opinion on Drug Discovery, 2011, 6, 9-15.	5.0	12
75	Immunoinformatic discovery of potential cross-reactive T cell epitopes in the measles genome. , 2011, , .		Ο
76	Immunogenic Consensus Sequence T helper Epitopes for a Pan-Burkholderia Biodefense Vaccine. Immunome Research, 2011, 7, .	0.1	14
77	An Integrated Genomic and Immunoinformatic Approach to H. pylori Vaccine Design. Immunome Research, 2011, 7, .	0.1	7
78	A Method for Individualizing the Prediction of Immunogenicity of Protein Vaccines and Biologic Therapeutics: Individualized T Cell Epitope Measure (iTEM). Journal of Biomedicine and Biotechnology, 2010, 2010, 1-7.	3.0	30
79	K _V 4.2 channels tagged in the S1-S2 loop for alpha-bungarotoxin binding provide a new tool for studies of channel expression and localization. Channels, 2010, 4, 115-123.	2.8	9
80	Time for T? Thoughts about the 2009 novel H1N1 influenza outbreak and the role of T cell epitopes in the next generation of influenza vaccines. Hum Vaccin, 2010, 6, 157-163.	2.4	3
81	Immunoinformatic-drivenH. pylorivaccine design. , 2010, , .		Ο
82	Immunoinformatic approach to a multi-pathogen genome-derived epitope-driven vaccine. , 2010, , .		0
83	Use of Bioinformatics to Predict MHC Ligands and T-Cell Epitopes. Methods in Microbiology, 2010, 37, 35-66.	0.8	5
84	Immunoinformatics: The Next Step in Vaccine Design. , 2010, , 223-244.		2
85	De-Immunization of Immunodominant HLA-DR Epitopes In the C2 Domain of Factor VIII. Blood, 2010, 116, 2207-2207.	1.4	Ο
86	T cell epitope: Friend or Foe? Immunogenicity of biologics in contextâ~†. Advanced Drug Delivery Reviews, 2009, 61, 965-976.	13.7	90
87	In silico-accelerated identification of conserved and immunogenic variola/vaccinia T-cell epitopes. Vaccine, 2009, 27, 6471-6479.	3.8	58
88	Epitope-based vaccination against pneumonic tularemia. Vaccine, 2009, 27, 5299-5306.	3.8	36
89	Immunoinformatic comparison of T-cell epitopes contained in novel swine-origin influenza A (H1N1) virus with epitopes in 2008–2009 conventional influenza vaccine. Vaccine, 2009, 27, 5740-5747.	3.8	86
90	Immunome-derived Epitope-driven Vaccines (ID-EDV) Protect against Viral or Bacterial Challenge in Humanized Mice. Procedia in Vaccinology, 2009, 1, 15-22.	0.4	2

#	Article	IF	CITATIONS
91	Epitope-Based Immunome-Derived Vaccines: A Strategy for Improved Design and Safety. , 2009, , 39-69.		36
92	Prediction of immunogenicity: in silico paradigms, ex vivo and in vivo correlates. Current Opinion in Pharmacology, 2008, 8, 620-626.	3.5	96
93	Identification of genome-derived vaccine candidates conserved between human and mouse-adapted strains ofH. pylori. Hum Vaccin, 2008, 4, 219-223.	2.4	16
94	Activation of natural regulatory T cells by IgG Fc–derived peptide "Tregitopes― Blood, 2008, 112, 3303-3311.	1.4	350
95	De-Immunization of Human Factor VIII: Identification of Epitopes in the C2 Domain. Blood, 2008, 112, 1030-1030.	1.4	0
96	IgG-Derived Tregitope Peptides Suppress T Cell Responses in Vitro and in Vivo. Blood, 2008, 112, 677-677.	1.4	0
97	Diversity of Francisella tularensis Schu4 antigens recognized by T lymphocytes after natural infections in humans: Identification of candidate epitopes for inclusion in a rationally designed tularemia vaccine. Vaccine, 2007, 25, 3179-3191.	3.8	65
98	Analysis of ChimeriVax Japanese Encephalitis Virus envelope for T-cell epitopes and comparison to circulating strain sequences. Vaccine, 2007, 25, 8077-8084.	3.8	6
99	New tools, new approaches and new ideas for vaccine development. Expert Review of Vaccines, 2007, 6, 125-127.	4.4	17
100	Prediction of immunogenicity for therapeutic proteins: state of the art. Current Opinion in Drug Discovery & Development, 2007, 10, 332-40.	1.9	42
101	Vaccine renaissancefrom basic research to implementation. Medicine and Health, Rhode Island, 2007, 90, 300.	0.1	0
102	Tularemia vaccines - an overview. Medicine and Health, Rhode Island, 2007, 90, 311-4.	0.1	7
103	Putting immunoinformatics to the test. Nature Biotechnology, 2006, 24, 791-792.	17.5	19
104	Evolutionary deimmunization: An ancillary mechanism for self-tolerance?. Cellular Immunology, 2006, 244, 148-153.	3.0	27
105	NMR Structural Analysis of α-Bungarotoxin and Its Complex with the Principal α-Neurotoxin-binding Sequence on the α7 Subunit of a Neuronal Nicotinic Acetylcholine Receptor. Journal of Biological Chemistry, 2002, 277, 12406-12417.	3.4	64
106	The Solution Structure of the Complex Formed between α-Bungarotoxin and an 18-mer Cognate Peptide Derived from the α1 Subunit of the Nicotinic Acetylcholine Receptor from Torpedo californica. Journal of Biological Chemistry, 2001, 276, 22930-22940.	3.4	46
107	Chimeric Analysis of a Neuronal Nicotinic Acetylcholine Receptor Reveals Amino Acids Conferring Sensitivity to ݱ-Bungarotoxin. Journal of Biological Chemistry, 1999, 274, 26113-26119.	3.4	53
108	Binding and Action of Insulin-Like Growth Factor I in Pituitary Tumor Cells*. Endocrinology, 1991, 128, 857-862.	2.8	39