Armin Rest

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4507282/publications.pdf

Version: 2024-02-01

		47006	60623
81	11,623	47	81
papers	citations	h-index	g-index
82	82	82	6909
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample. Astrophysical Journal, 2018, 859, 101.	4.5	1,694
2	Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science, 2017, 358, 1556-1558.	12.6	811
3	The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models. Astrophysical Journal Letters, 2017, 848, L17.	8.3	656
4	A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature, 2017, 551, 75-79.	27.8	601
5	ATLAS: A High-cadence All-sky Survey System. Publications of the Astronomical Society of the Pacific, 2018, 130, 064505.	3.1	569
6	Light curves of the neutron star merger GW170817/SSS17a: Implications for r-process nucleosynthesis. Science, 2017, 358, 1570-1574.	12.6	517
7	The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Discovery of the Optical Counterpart Using the Dark Energy Camera. Astrophysical Journal Letters, 2017, 848, L16.	8.3	392
8	The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. IV. Detection of Near-infrared Signatures of r-process Nucleosynthesis with Gemini-South. Astrophysical Journal Letters, 2017, 848, L19.	8.3	390
9	CfA3: 185 TYPE Ia SUPERNOVA LIGHT CURVES FROM THE CfA. Astrophysical Journal, 2009, 700, 331-357.	4.5	388
10	An ultraviolet–optical flare from the tidal disruption of a helium-rich stellar core. Nature, 2012, 485, 217-220.	27.8	373
11	The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. III. Optical and UV Spectra of a Blue Kilonova from Fast Polar Ejecta. Astrophysical Journal Letters, 2017, 848, L18.	8.3	327
12	The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VI. Radio Constraints on a Relativistic Jet and Predictions for Late-time Emission from the Kilonova Ejecta. Astrophysical Journal Letters, 2017, 848, L21.	8.3	266
13	COSMOLOGICAL CONSTRAINTS FROM MEASUREMENTS OF TYPE Ia SUPERNOVAE DISCOVERED DURING THE FIRST 1.5 yr OF THE Pan-STARRS1 SURVEY. Astrophysical Journal, 2014, 795, 44.	4.5	262
14	RAPIDLY EVOLVING AND LUMINOUS TRANSIENTS FROM PAN-STARRS1. Astrophysical Journal, 2014, 794, 23.	4.5	254
15	Early spectra of the gravitational wave source GW170817: Evolution of a neutron star merger. Science, 2017, 358, 1574-1578.	12.6	240
16	HYDROGEN-POOR SUPERLUMINOUS SUPERNOVAE AND LONG-DURATION GAMMA-RAY BURSTS HAVE SIMILAR HOST GALAXIES. Astrophysical Journal, 2014, 787, 138.	4.5	221
17	Electromagnetic evidence that SSS17a is the result of a binary neutron star merger. Science, 2017, 358, 1583-1587.	12.6	203
18	Pan-STARRS1 DISCOVERY OF TWO ULTRALUMINOUS SUPERNOVAE AT <i>z</i> 2011, 743, 114.	4.5	168

#	Article	IF	Citations
19	THE ULTRAVIOLET-BRIGHT, SLOWLY DECLINING TRANSIENT PS1-11af AS A PARTIAL TIDAL DISRUPTION EVENT. Astrophysical Journal, 2014, 780, 44.	4.5	166
20	Testing LMC Microlensing Scenarios: The Discrimination Power of the SuperMACHO Microlensing Survey. Astrophysical Journal, 2005, 634, 1103-1115.	4.5	160
21	TOWARD CHARACTERIZATION OF THE TYPE IIP SUPERNOVA PROGENITOR POPULATION: A STATISTICAL SAMPLE OF LIGHT CURVES FROM Pan-STARRS1. Astrophysical Journal, 2015, 799, 208.	4. 5	149
22	The Cow: Discovery of a Luminous, Hot, and Rapidly Evolving Transient. Astrophysical Journal Letters, 2018, 865, L3.	8.3	146
23	Design and Operation of the ATLAS Transient Science Server. Publications of the Astronomical Society of the Pacific, 2020, 132, 085002.	3.1	138
24	Light echoes from ancient supernovae in the Large Magellanic Cloud. Nature, 2005, 438, 1132-1134.	27.8	128
25	MULTI-COLOR OPTICAL AND NEAR-INFRARED LIGHT CURVES OF 64 STRIPPED-ENVELOPE CORE-COLLAPSE SUPERNOVAE. Astrophysical Journal, Supplement Series, 2014, 213, 19.	7.7	118
26	Measuring Dark Energy Properties with Photometrically Classified Pan-STARRS Supernovae. II. Cosmological Parameters. Astrophysical Journal, 2018, 857, 51.	4.5	116
27	Simulations of the WFIRST Supernova Survey and Forecasts of Cosmological Constraints. Astrophysical Journal, 2018, 867, 23.	4.5	112
28	The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VII. Properties of the Host Galaxy and Constraints on the Merger Timescale. Astrophysical Journal Letters, 2017, 848, L22.	8.3	107
29	The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VIII. A Comparison to Cosmological Short-duration Gamma-Ray Bursts. Astrophysical Journal Letters, 2017, 848, L23.	8.3	103
30	Should Type Ia Supernova Distances Be Corrected for Their Local Environments?. Astrophysical Journal, 2018, 867, 108.	4.5	98
31	The Foundation Supernova Survey: motivation, design, implementation, and first data release. Monthly Notices of the Royal Astronomical Society, 2018, 475, 193-219.	4.4	88
32	Hydrogen-poor Superluminous Supernovae from the Pan-STARRS1 Medium Deep Survey. Astrophysical Journal, 2018, 852, 81.	4.5	88
33	A fast-evolving luminous transient discovered by K2/Kepler. Nature Astronomy, 2018, 2, 307-311.	10.1	87
34	K2 Observations of SN 2018oh Reveal a Two-component Rising Light Curve for a Type Ia Supernova. Astrophysical Journal Letters, 2019, 870, L1.	8.3	80
35	Pan-STARRS Pixel Processing: Detrending, Warping, Stacking. Astrophysical Journal, Supplement Series, 2020, 251, 4.	7.7	77
36	Observational constraints on the optical and near-infrared emission from the neutron star–black hole binary merger candidate S190814bv. Astronomy and Astrophysics, 2020, 643, A113.	5.1	70

#	Article	IF	CITATIONS
37	The Foundation Supernova Survey: Measuring Cosmological Parameters with Supernovae from a Single Telescope. Astrophysical Journal, 2019, 881, 19.	4.5	67
38	How Many Kilonovae Can Be Found in Past, Present, and Future Survey Data Sets?. Astrophysical Journal Letters, 2018, 852, L3.	8.3	60
39	Final Moments. I. Precursor Emission, Envelope Inflation, and Enhanced Mass Loss Preceding the Luminous Type II Supernova 2020tlf. Astrophysical Journal, 2022, 924, 15.	4.5	59
40	CfAIR2: NEAR-INFRARED LIGHT CURVES OF 94 TYPE Ia SUPERNOVAE. Astrophysical Journal, Supplement Series, 2015, 220, 9.	7.7	58
41	PS1-10afx AT <i>>z</i> = 1.388: PAN-STARRS1 DISCOVERY OF A NEW TYPE OF SUPERLUMINOUS SUPERNOVA. Astrophysical Journal, 2013, 767, 162.	4.5	56
42	A DARK ENERGY CAMERA SEARCH FOR AN OPTICAL COUNTERPART TO THE FIRST ADVANCED LIGO GRAVITATIONAL WAVE EVENT GW150914. Astrophysical Journal Letters, 2016, 823, L33.	8.3	55
43	The Old Host-galaxy Environment of SSS17a, the First Electromagnetic Counterpart to a Gravitational-wave Source*. Astrophysical Journal Letters, 2017, 848, L30.	8.3	54
44	DISPLAYING THE HETEROGENEITY OF THE SN 2002cx-LIKE SUBCLASS OF TYPE Ia SUPERNOVAE WITH OBSERVATIONS OF THE Pan-STARRS-1 DISCOVERED SN 2009ku. Astrophysical Journal Letters, 2011, 731, L11.	8.3	52
45	The Young Supernova Experiment: Survey Goals, Overview, and Operations. Astrophysical Journal, 2021, 908, 143.	4.5	52
46	Machine learning for transient discovery in Pan-STARRS1 difference imaging. Monthly Notices of the Royal Astronomical Society, 2015, 449, 451-466.	4.4	51
47	A cool and inflated progenitor candidate for the Type Ib supernova 2019yvr at 2.6Âyr before explosion. Monthly Notices of the Royal Astronomical Society, 2021, 504, 2073-2093.	4.4	48
48	SN 2019ehk: A Double-peaked Ca-rich Transient with Luminous X-Ray Emission and Shock-ionized Spectral Features. Astrophysical Journal, 2020, 898, 166.	4.5	48
49	PS1-12sk IS A PECULIAR SUPERNOVA FROM A He-RICH PROGENITOR SYSTEM IN A BRIGHTEST CLUSTER GALAXY ENVIRONMENT. Astrophysical Journal, 2013, 769, 39.	4.5	47
50	Measuring the Properties of Dark Energy with Photometrically Classified Pan-STARRS Supernovae. I. Systematic Uncertainty from Core-collapse Supernova Contamination. Astrophysical Journal, 2017, 843, 6.	4.5	47
51	SuperRAENN: A Semisupervised Supernova Photometric Classification Pipeline Trained on Pan-STARRS1 Medium-Deep Survey Supernovae. Astrophysical Journal, 2020, 905, 94.	4.5	43
52	Searches after Gravitational Waves Using ARizona Observatories (SAGUARO): System Overview and First Results from Advanced LIGO/Virgo's Third Observing Run. Astrophysical Journal Letters, 2019, 881, L26.	8.3	41
53	Supernova Photometric Classification Pipelines Trained on Spectroscopically Classified Supernovae from the Pan-STARRS1 Medium-deep Survey. Astrophysical Journal, 2019, 884, 83.	4.5	33
54	SN2018kzr: A Rapidly Declining Transient from the Destruction of a White Dwarf. Astrophysical Journal Letters, 2019, 885, L23.	8.3	28

#	Article	IF	Citations
55	Cosmological Results from the RAISIN Survey: Using Type Ia Supernovae in the Near Infrared as a Novel Path to Measure the Dark Energy Equation of State. Astrophysical Journal, 2022, 933, 172.	4.5	25
56	Searches after Gravitational Waves Using ARizona Observatories (SAGUARO): Observations and Analysis from Advanced LIGO/Virgo's Third Observing Run. Astrophysical Journal, 2021, 912, 128.	4.5	24
57	Probing the extragalactic fast transient sky at minute time-scales with DECam. Monthly Notices of the Royal Astronomical Society, 2020, 491, 5852-5866.	4.4	22
58	An Early-time Optical and Ultraviolet Excess in the Type-Ic SN 2020oi. Astrophysical Journal, 2022, 924, 55.	4.5	22
59	Exceptionally fast ejecta seen in light echoes of Eta Carinae's Great Eruption. Monthly Notices of the Royal Astronomical Society, 2018, 480, 1457-1465.	4.4	21
60	Target-of-opportunity Observations of Gravitational-wave Events with Vera C. Rubin Observatory. Astrophysical Journal, Supplement Series, 2022, 260, 18.	7.7	21
61	The Gravity Collective: A Search for the Electromagnetic Counterpart to the Neutron Star–Black Hole Merger GW190814. Astrophysical Journal, 2021, 923, 258.	4.5	19
62	Progenitor and close-in circumstellar medium of type II supernova 2020fqv from high-cadence photometry and ultra-rapid UV spectroscopy. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2777-2797.	4.4	17
63	The Expansion of the Young Supernova Remnant 0509-68.7 (N103B). Astrophysical Journal Letters, 2018, 865, L13.	8.3	16
64	Testing the magnetar scenario for superluminous supernovae with circular polarimetry. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4984-4990.	4.4	15
65	Photometric Classification of 2315 Pan-STARRS1 Supernovae with Superphot. Astrophysical Journal, 2020, 905, 93.	4.5	15
66	A Carbon/Oxygen-dominated Atmosphere Days after Explosion for the "Super-Chandrasekhar―Type Ia SN 2020esm. Astrophysical Journal, 2022, 927, 78.	4.5	15
67	The Circumstellar Environments of Double-peaked, Calcium-strong Transients 2021gno and 2021inl. Astrophysical Journal, 2022, 932, 58.	4.5	15
68	A Search for Optical Emission from Binary Black Hole Merger GW170814 with the Dark Energy Camera. Astrophysical Journal Letters, 2019, 873, L24.	8.3	14
69	PS15cey and PS17cke: prospective candidates from the Pan-STARRS Search for kilonovae. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4213-4228.	4.4	13
70	The Candidate Progenitor Companion Star of the Type lb/c SN 2013ge. Astrophysical Journal Letters, 2022, 929, L15.	8.3	11
71	An Empirical Study of Contamination in Deep, Rapid, and Wide-field Optical Follow-up of Gravitational Wave Events. Astrophysical Journal, 2018, 858, 18.	4.5	10
72	SN 2018agk: A Prototypical Type Ia Supernova with a Smooth Power-law Rise in Kepler (K2). Astrophysical Journal, 2021, 923, 167.	4.5	10

ARMIN REST

#	Article	IF	CITATION
73	SOAR/Goodman Spectroscopic Assessment of Candidate Counterparts of the LIGO/Virgo Event GW190814*. Astrophysical Journal, 2022, 929, 115.	4.5	9
74	A DESGW Search for the Electromagnetic Counterpart to the LIGO/Virgo Gravitational-wave Binary Neutron Star Merger Candidate S190510g. Astrophysical Journal, 2020, 903, 75.	4.5	8
75	Discovery of a new WZÂSagittae-type cataclysmic variable in the Kepler/K2 data. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5551-5559.	4.4	7
76	NEO Population, Velocity Bias, and Impact Risk from an ATLAS Analysis. Planetary Science Journal, 2021, 2, 12.	3.6	7
77	The Foundation Supernova Survey: Photospheric Velocity Correlations in Type Ia Supernovae. Astrophysical Journal, 2021, 923, 267.	4.5	7
78	Searching for a Hypervelocity White Dwarf SN Ia Companion: A Proper-motion Survey of SN 1006. Astrophysical Journal Letters, 2022, 933, L31.	8.3	7
79	AT 2019qyl in NGC 300: Internal Collisions in the Early Outflow from a Very Fast Nova in a Symbiotic Binary* â€. Astrophysical Journal, 2021, 920, 127.	4.5	4
80	Locating the CSM Emission within the Type Ia Supernova Remnant N103B. Astrophysical Journal, 2022, 926, 207.	4.5	4
81	<i>K2</i> : Background Survey – the search for undiscovered transients in <i>Kepler</i> / <i>K2</i> data. Monthly Notices of the Royal Astronomical Society, 2020, 498, 33-43.	4.4	3