
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/450697/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of Interfaces in Two-Dimensional Photocatalyst for Water Splitting. ACS Catalysis, 2018, 8, 2253-2276.	11.2	773
2	One‣tep Synthesis of Nb ₂ O ₅ /C/Nb ₂ C (MXene) Composites and Their Use as Photocatalysts for Hydrogen Evolution. ChemSusChem, 2018, 11, 688-699.	6.8	315
3	2D/2D heterojunction of Ti ₃ C ₂ /g-C ₃ N ₄ nanosheets for enhanced photocatalytic hydrogen evolution. Nanoscale, 2019, 11, 8138-8149.	5.6	289
4	Monolayer Ti ₃ C ₂ <i>T</i> _{<i>x</i>} as an Effective Co-catalyst for Enhanced Photocatalytic Hydrogen Production over TiO ₂ . ACS Applied Energy Materials, 2019, 2, 4640-4651.	5.1	177
5	Sulfur Vacancy and Ti ₃ C ₂ T <i>_x</i> Cocatalyst Synergistically Boosting Interfacial Charge Transfer in 2D/2D Ti ₃ C ₂ T <i>_x</i> /i>/ZnIn ₂ S ₄ Heterostructure for Enhanced Photocatalytic Hydrogen Evolution, Advanced Science, 2022, 9, e2103715.	11.2	120
6	Catalytic removal NO by CO over LaNi0.5M0.5O3 (M = Co, Mn, Cu) perovskite oxide catalysts: Tune surface chemical composition to improve N2 selectivity. Chemical Engineering Journal, 2019, 369, 511-521.	12.7	96
7	CuO-Fe2O3-CeO2/HZSM-5 bifunctional catalyst hydrogenated CO2 for enhanced dimethyl ether synthesis. Chemical Engineering Science, 2016, 153, 10-20.	3.8	84
8	Low temperature CO oxidation catalysed by flower-like Ni–Co–O: how physicochemical properties influence catalytic performance. RSC Advances, 2018, 8, 7110-7122.	3.6	84
9	Synthesis of Dimethyl Ether from CO ₂ and H ₂ Using a Cu–Fe–Zr/HZSM-5 Catalyst System. Industrial & Engineering Chemistry Research, 2013, 52, 16648-16655.	3.7	82
10	Preparation and characterization of Cu modified BiYO3 for carbon dioxide reduction to formic acid. Applied Catalysis B: Environmental, 2017, 202, 364-373.	20.2	74
11	Co3O4/CdS p-n heterojunction for enhancing photocatalytic hydrogen production: Co-S bond as a bridge for electron transfer. Applied Surface Science, 2021, 567, 150849.	6.1	73
12	Polyethyleneimine modified activated carbon for adsorption of Cd(II) in aqueous solution. Journal of Environmental Chemical Engineering, 2019, 7, 103183.	6.7	70
13	An overview of photocatalysis facilitated by 2D heterojunctions. Nanotechnology, 2019, 30, 502002.	2.6	66
14	In situ DRIFTS study of O 3 adsorption on CaO, γ-Al 2 O 3 , CuO, α-Fe 2 O 3 and ZnO at room temperature for the catalytic ozonation of cinnamaldehyde. Applied Surface Science, 2017, 412, 290-305.	6.1	65
15	The enhancement of photocatalytic CO ₂ reduction by the <i>in situ</i> growth of TiO ₂ on Ti ₃ C ₂ MXene. Catalysis Science and Technology, 2021, 11, 1602-1614.	4.1	65
16	Preparation of three-dimensionally ordered macroporous MFe2O4 (MÂ=ÂCo, Ni, Cu) spinel catalyst and its simultaneous catalytic application in CO oxidation and NOÂ+ÂCO reaction. Fuel, 2020, 272, 117738.	6.4	61
17	Catalytic reduction of NO by CO over B-site partially substituted LaM0.25Co0.75O3 (M = Cu, Mn, Fe) perovskite oxide catalysts: The correlation between physicochemical properties and catalytic performance. Applied Catalysis A: General, 2018, 568, 43-53.	4.3	59
18	Decolorization of molasses fermentation wastewater by SnO2-catalyzed ozonation. Journal of Hazardous Materials, 2009, 162, 682-687.	12.4	58

#	Article	IF	CITATIONS
19	CO2 reforming of CH4 to syngas over nickel-based catalysts. Environmental Chemistry Letters, 2020, 18, 997-1017.	16.2	57
20	Recent advances in the photocatalytic reduction of carbon dioxide. Environmental Chemistry Letters, 2016, 14, 99-112.	16.2	54
21	Density functional theory study on the interaction of CO2 with Fe3O4(111) surface. Applied Surface Science, 2016, 378, 270-276.	6.1	49
22	Hydrogenation of CO2 to dimethyl ether on La-, Ce-modified Cu-Fe/HZSM-5 catalysts. Catalysis Communications, 2016, 75, 78-82.	3.3	49
23	Prepared self-growing supported nickel catalyst by recovering Ni (â¡) from metal wastewater using geopolymer microspheres. Journal of Hazardous Materials, 2020, 389, 121919.	12.4	47
24	Polyethyleneimine-modified magnetic starch microspheres for Cd(II) adsorption in aqueous solutions. Advanced Composites and Hybrid Materials, 2022, 5, 2772-2786.	21.1	45
25	TiO2/BiYO3 composites for enhanced photocatalytic hydrogen production. Journal of Alloys and Compounds, 2020, 836, 155428.	5.5	42
26	Ni/bentonite catalysts prepared by solution combustion method for CO2 methanation. Chinese Journal of Chemical Engineering, 2018, 26, 2361-2367.	3.5	41
27	Surface engineering of MXenes for energy and environmental applications. Journal of Materials Chemistry A, 2022, 10, 10265-10296.	10.3	41
28	Experimental and theoretical study of the intrinsic kinetics for dimethyl ether synthesis from CO ₂ over Cu–Fe–Zr/HZSMâ€5. AICHE Journal, 2015, 61, 1613-1627.	3.6	40
29	Synthesis of BiYO3 for degradation of organic compounds under visible-light irradiation. Catalysis Communications, 2009, 10, 1604-1608.	3.3	36
30	CO2 methanation on Co/TiO2 catalyst: Effects of Y on the support. Chemical Engineering Science, 2019, 210, 115245.	3.8	36
31	Soft template inducted hydrothermal BiYO ₃ catalysts for enhanced formic acid formation from the photocatalytic reduction of carbon dioxide. RSC Advances, 2016, 6, 52665-52673.	3.6	32
32	Preparation of Ni/bentonite catalyst and its applications in the catalytic hydrogenation of nitrobenzene to aniline. Chinese Journal of Chemical Engineering, 2016, 24, 1195-1200.	3.5	30
33	Preparation and characterization of Ni-B/SiO2sol amorphous catalyst and its catalytic activity for hydrogenation of nitrobenzene. Catalysis Communications, 2016, 85, 17-21.	3.3	29
34	Mechanically activated starch magnetic microspheres for Cd(II) adsorption from aqueous solution. Chinese Journal of Chemical Engineering, 2021, 33, 40-49.	3.5	29
35	Enhanced catalytic properties of Cu-based composites for NOx reduction with coexistence and intergrowth effect. Fuel, 2018, 234, 296-304.	6.4	28
36	Influence of Zr, Ce, and La on Co 3 O 4 catalyst for CO 2 methanation at low temperature. Chinese Journal of Chemical Engineering, 2018, 26, 768-774.	3.5	27

#	Article	IF	CITATIONS
37	Mn Modified Ni/Bsentonite for CO2 Methanation. Catalysts, 2018, 8, 646.	3.5	27
38	Three-dimensionally ordered macroporous Fe-doped ceria catalyst with enhanced activity at a wide operating temperature window for selective catalytic reduction of NOx. Applied Surface Science, 2019, 498, 143780.	6.1	25
39	Highly efficient V-Mo-Fe-O catalysts for selective oxidation of toluene to benzaldehyde. Catalysis Communications, 2016, 86, 72-76.	3.3	24
40	Spontaneous reduction of copper on Ti3C2Tx as fast electron transport channels and active sites for enhanced photocatalytic CO2 reduction. Chemical Engineering Journal, 2022, 446, 137028.	12.7	24
41	Solubility of luteolin in several imidazole-based ionic liquids and extraction from peanut shells using selected ionic liquid as solvent. Separation and Purification Technology, 2014, 135, 223-228.	7.9	21
42	g ₃ N ₄ /BiYO ₃ Composite for Photocatalytic Hydrogen Evolution. ChemistrySelect, 2018, 3, 5891-5899.	1.5	21
43	Coke-resistant Ni-based bimetallic catalysts for the dry reforming of methane: effects of indium on the Ni/Al ₂ O ₃ catalyst. Catalysis Science and Technology, 2022, 12, 4826-4836.	4.1	21
44	A zinc sulfide-supported iron tetrakis (4-carboxyl phenyl) porphyrin catalyst for aerobic oxidation of cyclohexane. RSC Advances, 2015, 5, 24788-24794.	3.6	20
45	Preparation of W-modified FeMo catalyst and its applications in the selective oxidization of p-xylene to terephthalaldehyde. Chemical Engineering Journal, 2014, 242, 414-421.	12.7	18
46	The Adsorption of Ozone on the Solid Catalyst Surface and the Catalytic Reaction Mechanism for Organic Components. ChemistrySelect, 2020, 5, 15092-15116.	1.5	18
47	Preparation magnetic cassava residue microspheres and its application for Cu(II) adsorption. Journal of Environmental Chemical Engineering, 2017, 5, 2800-2806.	6.7	17
48	Preparation of InYO3 catalyst and its application in photodegradation of molasses fermentation wastewater. Journal of Environmental Sciences, 2011, 23, 1219-1224.	6.1	15
49	Intrinsic Kinetics of Dimethyl Ether Synthesis from Plasma Activation of CO ₂ Hydrogenation over Cu–Fe–Ce/HZSMâ€5. ChemPhysChem, 2017, 18, 299-309.	2.1	15
50	Bi― Y odoped TiO2 for Carbon Dioxide Photocatalytic Reduction to Formic Acid under Visible Light Irradiation. Chinese Journal of Chemistry, 2018, 36, 538-544.	4.9	15
51	Preparation of PbYO composite photocatalysts for degradation of methyl orange under visible-light irradiation. Catalysis Communications, 2012, 18, 93-97.	3.3	13
52	In Situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy Study of NO + CO Reaction on La _{0.8} Ce _{0.2} Mn _{1–<i>x</i>} Fe _{<i>x</i>} O ₃ Perovskites: Changes in Catalytic Properties Caused by Fe Incorporation. Industrial & Engineering Chemistry Research, 2019, 58, 9065-9074.	3.7	13
53	Aminated cassava residue-based magnetic microspheres for Pb(II) adsorption from wastewater. Korean Journal of Chemical Engineering, 2019, 36, 226-235.	2.7	13
54	PEI modified magnetic porous cassava residue microspheres for adsorbing Cd(II) from aqueous solution. European Polymer Journal, 2021, 159, 110741.	5.4	12

#	Article	IF	CITATIONS
55	Catalytic ozonation of cinnamaldehyde to benzaldehyde over CaO: Experiments and intrinsic kinetics. AICHE Journal, 2017, 63, 4403-4417.	3.6	11
56	Role of water on ozonation of cinnamaldehyde to benzaldehyde under Ca(OH)2 catalysis: A combined in situ DRIFTS and DFT study. Applied Surface Science, 2021, 569, 151071.	6.1	11
57	PROMOTION EFFECT OF Mo IN AMORPHOUS NI-P CATALYSTS FOR THE LIQUID-PHASE CATALYTIC HYDROGENATION OF NITROBENZENE TO ANILINE. Chemical Engineering Communications, 2014, 201, 338-351.	2.6	10
58	Superparamagnetic Supported Catalyst H3PW12O40/Î ³ -Fe2O3 for Alkylation of Thiophene with Olefine. Chinese Journal of Chemical Engineering, 2014, 22, 305-311.	3.5	9
59	The effects of different methods of catalyst preparation on the hydro-electric plasma TiO2-catalyzed degradation of 2,4-dinitrophenol. Environmental Chemistry Letters, 2009, 7, 149-153.	16.2	8
60	Antiâ€Coke Properties of Acidâ€Treated Bentoniteâ€Supported Nickelâ€Boron Catalyst. Chemical Engineering and Technology, 2018, 41, 175-181.	1.5	8
61	Visible Light Photocatalysts Based on Manganese Doped TiO ₂ Integrated Within Monolithic Reduced Graphene Oxide/Polymer Porous Monolith. ChemistrySelect, 2020, 5, 5873-5882.	1.5	8
62	Ni/CeO ₂ prepared by improved polyol method for DRM with highly dispersed Ni. , 2021, 11, 1245-1264.		8
63	Preparation, Characterization, and Activity of Y ₂ O ₃ -ZnO Complex Oxides for the Photodegradation of 2,4-Dinitrophenol. International Journal of Photoenergy, 2014, 2014, 1-8.	2.5	7
64	Recent Advances in Heterogeneous Catalytic Hydrogenation of CO2 to Methane. , 0, , .		6
65	Preparation of Bi _X Y _(2-X) O ₃ and its Photocatalytic Degradation of Molasses Fermentation Wastewater under Visible-Light Irradiation. Advanced Materials Research, 2011, 287-290, 1640-1645.	0.3	5
66	Zr-Modified ZnO for the Selective Oxidation of Cinnamaldehyde to Benzaldehyde. Catalysts, 2019, 9, 716.	3.5	4
67	Preparation and Characterization of Ni-Modified Fe-Mo and Catalytic Selective Oxidation of <i>p</i> -Xylene. Advanced Materials Research, 2012, 557-559, 1501-1504.	0.3	3
68	Acid-treated bentonite-supported Ni catalysts via rapid microwave-assisted drying for nitrobenzene hydrogenation. Chemical Engineering Communications, 2018, 205, 624-636.	2.6	3
69	Ba-modified Ni-P amorphous alloy/acidified bentonite catalyst: preparation and the catalytic hydrogenation of nitrobenzene to aniline. Reaction Kinetics, Mechanisms and Catalysis, 2020, 131, 805-818.	1.7	3
70	Photocatalytic Reduction of Carbon Dioxide. Environmental Chemistry for A Sustainable World, 2015, , 61-98.	0.5	2
71	Catalytic Ozonation of Cinnamaldehyde to Benzaldehyde over Ca(OH) ₂ . ChemistrySelect, 2021, 6, 5052-5060.	1.5	2
72	Structure identification and analysis of the suspected chemical precursor of 2â€fluorodeschloroketamine and its decomposition products. Drug Testing and Analysis, 2022, 14, 1065-1078.	2.6	2

#	Article	IF	CITATIONS
73	lsolation of Triterpenoids from <i>Catunaregam spinosa</i> . Advanced Materials Research, 0, 236-238, 1731-1737.	0.3	1
74	Preparation of Mo-Fe/SiO ₂ and Catalytic Selective Oxidation of <i>p</i> -Xylene. Advanced Materials Research, 2011, 396-398, 782-785.	0.3	0
75	Preparation of MgAlY-LDO Solid Base Catalysts and their Catalytic Performance on the Synthesis of Isophorone via Acetone Condensation. Advanced Materials Research, 2012, 550-553, 424-428.	0.3	0