
Geraldo A Passos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4506140/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcript Expression Profiles and MicroRNA Regulation Indicate an Upregulation of Processes Linked to Oxidative Stress, DNA Repair, Cell Death, and Inflammation in Type 1 Diabetes Mellitus Patients. Journal of Diabetes Research, 2022, 2022, 1-15.	2.3	6
2	Transcriptome During Normal Cell Differentiation. , 2022, , 209-222.		0
3	The absence of the autoimmune regulator gene (AIRE) impairs the three-dimensional structure of medullary thymic epithelial cell spheroids. BMC Molecular and Cell Biology, 2022, 23, 15.	2.0	0
4	miR-155 exerts posttranscriptional control of autoimmune regulator (Aire) and tissue-restricted antigen genes in medullary thymic epithelial cells. BMC Genomics, 2022, 23, .	2.8	2
5	Preface of the Special Issue "Anti-Tumor CAR-T Cell Therapy". Critical Reviews in Immunology, 2021, 41, v-vi.	0.5	0
6	Cigarette smoke induces <i>miR-132</i> in Th17 cells that enhance osteoclastogenesis in inflammatory arthritis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	39
7	Autoimmune regulator act in synergism with thymocyte adhesion in the control of lncRNAs in medullary thymic epithelial cells. Molecular Immunology, 2021, 140, 127-135.	2.2	1
8	Aire Gene Influences the Length of the 3′ UTR of mRNAs in Medullary Thymic Epithelial Cells. Frontiers in Immunology, 2020, 11, 1039.	4.8	1
9	Preface: Immune Response against Coronaviruses Including SARS-CoV-2. Critical Reviews in Immunology, 2020, 40, v-vi.	0.5	0
10	Identification of Cell-Free Circulating MicroRNAs for the Detection of Early Breast Cancer and Molecular Subtyping. Journal of Oncology, 2019, 2019, 1-11.	1.3	30
11	The Autoimmune Regulator (Aire) transactivates <i><scp>HLA</scp>â€G</i> gene expression in thymic epithelial cells. Immunology, 2019, 158, 121-135.	4.4	20
12	Adhesion between medullary thymic epithelial cells and thymocytes is regulated by miR-181b-5p and miR-30b*. Molecular Immunology, 2019, 114, 600-611.	2.2	11
13	Trans-chalcone activity against Trichophyton rubrum relies on an interplay between signaling pathways related to cell wall integrity and fatty acid metabolism. BMC Genomics, 2019, 20, 411.	2.8	9
14	The Thymus as a Mirror of the Body's Gene Expression. , 2019, , 215-234.		11
15	Post-transcriptional markers associated with clinical complications in Type 1 and Type 2 diabetes mellitus. Molecular and Cellular Endocrinology, 2019, 490, 1-14.	3.2	41
16	Effect of cell source and osteoblast differentiation on gene expression profiles of mesenchymal stem cells derived from bone marrow or adipose tissue. Journal of Cellular Biochemistry, 2019, 120, 11842-11852.	2.6	17
17	Menopause transition promotes distinct modulation of mRNAs and miRNAs expression in calvaria and bone marrow osteoblastic cells. Cell Biology International, 2018, 42, 12-24.	3.0	8
18	Update on <i>Aire</i> and thymic negative selection. Immunology, 2018, 153, 10-20.	4.4	76

#	Article	IF	CITATIONS
19	Predicted miRNA-mRNA-mediated posttranscriptional control associated with differences in cervical and thoracic thymus function. Molecular Immunology, 2018, 99, 39-52.	2.2	5
20	Abnormal T-Cell Development in the Thymus of Non-obese Diabetic Mice: Possible Relationship With the Pathogenesis of Type 1 Autoimmune Diabetes. Frontiers in Endocrinology, 2018, 9, 381.	3.5	13
21	Aire Disruption Influences the Medullary Thymic Epithelial Cell Transcriptome and Interaction With Thymocytes. Frontiers in Immunology, 2018, 9, 964.	4.8	26
22	Posttranscriptional Interaction Between miRâ€450aâ€5p and miRâ€28â€5p and STAT1 mRNA Triggers Osteoblas Differentiation of Human Mesenchymal Stem Cells. Journal of Cellular Biochemistry, 2017, 118, 4045-4062.	stic 2.6	25
23	Oxidative Nanopatterning of Titanium Surface Influences mRNA and MicroRNA Expression in Human Alveolar Bone Osteoblastic Cells. International Journal of Biomaterials, 2016, 2016, 1-15.	2.4	6
24	Aire Downregulation Is Associated with Changes in the Posttranscriptional Control of Peripheral Tissue Antigens in Medullary Thymic Epithelial Cells. Frontiers in Immunology, 2016, 7, 526.	4.8	20
25	Identification of microRNAs with Dysregulated Expression in Status Epilepticus Induced Epileptogenesis. PLoS ONE, 2016, 11, e0163855.	2.5	13
26	Aire knockdown in medullary thymic epithelial cells affects Aire protein, deregulates cell adhesion genes and decreases thymocyte interaction. Molecular Immunology, 2016, 77, 157-173.	2.2	36
27	The Thymic Orchestration Involving Aire, miRNAs, and Cell–Cell Interactions during the Induction of Central Tolerance. Frontiers in Immunology, 2015, 6, 352.	4.8	38
28	Editorial: The Role of Aire, microRNAs and Cell–Cell Interactions on Thymic Architecture and Induction of Tolerance. Frontiers in Immunology, 2015, 6, 615.	4.8	4
29	Comprehensive Survey of miRNA-mRNA Interactions Reveals That Ccr7 and Cd247 (CD3 zeta) are Posttranscriptionally Controlled in Pancreas Infiltrating T Lymphocytes of Non-Obese Diabetic (NOD) Mice. PLoS ONE, 2015, 10, e0142688.	2.5	30
30	Undifferentiated pulp cells and odontoblast-like cells share genes involved in the process of odontogenesis. Archives of Oral Biology, 2015, 60, 593-599.	1.8	4
31	Assessment of DNA damage and mRNA/miRNA transcriptional expression profiles in hyperglycemic versus non-hyperglycemic patients with type 2 diabetes mellitus. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2015, 776, 98-110.	1.0	22
32	Aire-dependent peripheral tissue antigen mRNAs in mTEC cells feature networking refractoriness to microRNA interaction. Immunobiology, 2015, 220, 93-102.	1.9	28
33	Transcriptomics in Health and Disease. , 2014, , .		3
34	Differential Transcript Profiles of MHC Class lb(Qa-1, Qa-2, and Qa-10) and <i>Aire</i> Genes during the Ontogeny of Thymus and Other Tissues. Journal of Immunology Research, 2014, 2014, 1-12.	2.2	12
35	MicroRNA expression profiling and functional annotation analysis of their targets in patients with type 1 diabetes mellitus. Gene, 2014, 539, 213-223.	2.2	65
36	One-week intervention period led to improvements in glycemic control and reduction in DNA damage levels in patients with type 2 diabetes mellitus. Diabetes Research and Clinical Practice, 2014, 105, 356-363.	2.8	16

#	Article	IF	CITATIONS
37	Integrative analysis of the transcriptome profiles observed in type 1, type 2 and gestational diabetes mellitus reveals the role of inflammation. BMC Medical Genomics, 2014, 7, 28.	1.5	28
38	Cisplatin associated with LY294002 increases cytotoxicity and induces changes in transcript profiles of glioblastoma cells. Molecular Biology Reports, 2014, 41, 165-177.	2.3	16
39	P102. Human Immunology, 2014, 75, 122.	2.4	0
40	What Is the Transcriptome and How it is Evaluated?. , 2014, , 3-48.		5
41	Transcriptome Analysis During Normal Human Mesenchymal Stem Cell Differentiation. , 2014, , 109-119.		1
42	MicroRNAs from peripheral blood mononuclear cells as biomarkers for detection of preclinical fibrosarcoma. BMC Proceedings, 2013, 7, P2.	1.6	1
43	Autoimmune regulator (Aire) controls the expression of microRNAs in medullary thymic epithelial cells. Immunobiology, 2013, 218, 554-560.	1.9	57
44	Ionizing radiation-induced gene expression changes in TP53 proficient and deficient glioblastoma cell lines. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2013, 756, 46-55.	1.7	24
45	Expression profile of peripheral tissue antigen genes in medullary thymic epithelial cells (mTECs) is dependent on mRNA levels of autoimmune regulator (Aire). Immunobiology, 2013, 218, 96-104.	1.9	25
46	Transcriptome meta-analysis of peripheral lymphomononuclear cells indicates that gestational diabetes is closer to type 1 diabetes than to type 2 diabetes mellitus. Molecular Biology Reports, 2013, 40, 5351-5358.	2.3	24
47	Identifying common and specific microRNAs expressed in peripheral blood mononuclear cell of type 1, type 2, and gestational diabetes mellitus patients. BMC Research Notes, 2013, 6, 491.	1.4	132
48	T Cell Post-Transcriptional miRNA-mRNA Interaction Networks Identify Targets Associated with Susceptibility/Resistance to Collagen-induced Arthritis. PLoS ONE, 2013, 8, e54803.	2.5	30
49	Differential Gene Expression Profiles May Differentiate Responder and Nonresponder Patients with Rheumatoid Arthritis for Methotrexate (MTX) Monotherapy and MTX plus Tumor Necrosis Factor Inhibitor Combined Therapy. Journal of Rheumatology, 2012, 39, 1524-1532.	2.0	19
50	Gene expression profiles displayed by peripheral blood mononuclear cells from patients with type 2 diabetes mellitus focusing on biological processes implicated on the pathogenesis of the disease. Gene, 2012, 511, 151-160.	2.2	54
51	Murine Dendritic Cells Transcriptional Modulation upon Paracoccidioides brasiliensis Infection. PLoS Neglected Tropical Diseases, 2012, 6, e1459.	3.0	21
52	Bosentan, an endothelin receptor antagonist, ameliorates collagen-induced arthritis: the role of TNF-α in the induction of endothelin system genes. Inflammation Research, 2012, 61, 337-348.	4.0	22
53	Transcription profiling of Prss16 (Tssp) can be used to find additional peptidase genes that are candidates for self-peptide generation in the thymus. Molecular Biology Reports, 2012, 39, 4051-4058.	2.3	6
54	Collagen induced arthritis (CIA) in mice features regulatory transcriptional network connecting major histocompatibility complex (MHC H2) with autoantigen genes in the thymus. Immunobiology, 2011, 216, 591-603.	1.9	12

#	Article	IF	CITATIONS
55	The non-coding RNA BC1 is down-regulated in the hippocampus of Wistar Audiogenic Rat (WAR) strain after audiogenic kindling. Brain Research, 2011, 1367, 114-121.	2.2	22
56	Expression of genes related to apoptosis, cell cycle and signaling pathways are independent of TP53 status in urinary bladder cancer cells. Molecular Biology Reports, 2011, 38, 4159-4170.	2.3	21
57	Delayed effects of exposure to a moderate radiation dose on transcription profiles in human primary fibroblasts. Environmental and Molecular Mutagenesis, 2011, 52, 117-129.	2.2	9
58	Development of Type 1 Diabetes Mellitus in Nonobese Diabetic Mice Follows Changes in Thymocyte and Peripheral T Lymphocyte Transcriptional Activity. Clinical and Developmental Immunology, 2011, 2011, 1-12.	3.3	12
59	The Impact of Transcriptomics on the Fight against Tuberculosis: Focus on Biomarkers, BCG Vaccination, and Immunotherapy. Clinical and Developmental Immunology, 2011, 2011, 1-6.	3.3	14
60	Age-related deregulation of Aire and peripheral tissue antigen genes in the thymic stroma of non-obese diabetic (NOD) mice is associated with autoimmune type 1 diabetes mellitus (DM-1). Molecular and Cellular Biochemistry, 2010, 342, 21-28.	3.1	23
61	RNA interference-mediated knockdown of CD49e (α5 integrin chain) in human thymic epithelial cells modulates the expression of multiple genes and decreases thymocyte adhesion. BMC Genomics, 2010, 11, S2.	2.8	32
62	Alterations in gene expression profiles correlated with cisplatin cytotoxicity in the glioma U343 cell line. Genetics and Molecular Biology, 2010, 33, 159-168.	1.3	17
63	Cell cycle arrest and apoptosis in <i>TP53</i> subtypes of bladder carcinoma cell lines treated with cisplatin and gemcitabine. Experimental Biology and Medicine, 2010, 235, 814-824.	2.4	39
64	Shared and Unique Gene Expression in Systemic Lupus Erythematosus Depending on Disease Activity. Annals of the New York Academy of Sciences, 2009, 1173, 493-500.	3.8	13
65	The Effect of TAK-778 on Gene Expression of Osteoblastic Cells Is Mediated Through Estrogen Receptor. Experimental Biology and Medicine, 2009, 234, 190-199.	2.4	4
66	Gene Expression Profiles in Radiation Workers Occupationally Exposed to Ionizing Radiation. Journal of Radiation Research, 2009, 50, 61-71.	1.6	73
67	Transcriptional Response of Peripheral Lymphocytes to Early Fibrosarcoma: A Model System for Cancer Detection Based on Hybridization Signatures. Experimental Biology and Medicine, 2009, 234, 802-812.	2.4	2
68	Microarrayâ€based gene expression analysis of human osteoblasts in response to different biomaterials. Journal of Biomedical Materials Research - Part A, 2009, 88A, 401-408.	4.0	35
69	Comprehensive gene expression profiling in lungs of mice infected with <i>Mycobacterium tuberculosis</i> following DNAhsp65 immunotherapy. Journal of Gene Medicine, 2009, 11, 66-78.	2.8	22
70	Occurrence of TRGV-BJ hybrid gene in SV40-transformed fibroblast cell lines. Genetica, 2009, 136, 471-478.	1.1	0
71	Differential gene expression of peripheral blood mononuclear cells from rheumatoid arthritis patients may discriminate immunogenetic, pathogenic and treatment features. Immunology, 2009, 127, 365-372.	4.4	20
72	Evidence for a network transcriptional control of promiscuous gene expression in medullary thymic epithelial cells. Molecular Immunology, 2009, 46, 3240-3244.	2.2	26

#	Article	IF	CITATIONS
73	Genetic Susceptibility Loci in Rheumatoid Arthritis Establish Transcriptional Regulatory Networks with Other Genes. Annals of the New York Academy of Sciences, 2009, 1173, 521-537.	3.8	12
74	Genes that code for T cell signaling proteins establish transcriptional regulatory networks during thymus ontogeny. Molecular and Cellular Biochemistry, 2008, 318, 63-71.	3.1	6
75	Gene Expression Profiles Stratified according to Type 1 Diabetes Mellitus Susceptibility Regions. Annals of the New York Academy of Sciences, 2008, 1150, 282-289.	3.8	13
76	Transcriptional changes in U343 MG-a glioblastoma cell line exposed to ionizing radiation. Human and Experimental Toxicology, 2008, 27, 919-929.	2.2	19
77	Gene Expression Profiles in Human Lymphocytes Irradiated In Vitro with Low Doses of Gamma Rays. Radiation Research, 2007, 168, 650.	1.5	59
78	Time Course of c-fos, vasopressin and oxytocin mRNA Expression in the Hypothalamus Following Long-Term Dehydration. Cellular and Molecular Neurobiology, 2007, 27, 575-584.	3.3	20
79	Use of the CRISPR/Cas9 System for Genome Editing of Immune System Cells, Defense Against HIV-1 and Cancer Therapies. , 0, , 401-413.		Ο
80	Effect of osteoporosis in the transcriptional profile of osteoblastic cells from bone marrow and calvaria of ovariectomized rats. Bone Abstracts, 0, , .	0.0	0