Florian Lesage

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4505469/publications.pdf Version: 2024-02-01

FLODIAN LESACE

#	Article	IF	CITATIONS
1	Physiological roles of heteromerization: focus on the twoâ€pore domain potassium channels. Journal of Physiology, 2021, 599, 1041-1055.	1.3	16
2	Two P domain potassium channels in GtoPdb v.2021.2. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	0
3	Convergence of Multiple Stimuli to a Single Gate in TREK1 and TRAAK Potassium Channels. Frontiers in Pharmacology, 2021, 12, 755826.	1.6	2
4	Two-pore domain potassium channels (K _{2P}) in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	0
5	A standardised hERG phenotyping pipeline to evaluate KCNH2 genetic variant pathogenicity. Clinical and Translational Medicine, 2021, 11, e609.	1.7	7
6	Piezo1 and Piezo2 foster mechanical gating of K2P channels. Cell Reports, 2021, 37, 110070.	2.9	10
7	Heterodimerization of TALK Subunits. Biophysical Journal, 2020, 118, 416a.	0.2	Ο
8	TREK1 channel activation as a new analgesic strategy devoid of opioid adverse effects. British Journal of Pharmacology, 2020, 177, 4782-4795.	2.7	13
9	Inhibition of histone deacetylation rescues phenotype in a mouse model of Birk-Barel intellectual disability syndrome. Nature Communications, 2020, 11, 480.	5.8	23
10	Mutation of a single residue promotes gating of vertebrate and invertebrate two-pore domain potassium channels. Nature Communications, 2019, 10, 787.	5.8	35
11	Migraine-Associated TRESK Mutations Increase Neuronal Excitability through Alternative Translation Initiation and Inhibition of TREK. Neuron, 2019, 101, 232-245.e6.	3.8	99
12	Lack of p11 expression facilitates acidityâ€sensing function of TASK1 channels in mouse adrenal medullary cells. FASEB Journal, 2019, 33, 455-468.	0.2	12
13	Two P domain potassium channels (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	5
14	Antagonistic Effect of a Cytoplasmic Domain on the Basal Activity of Polymodal Potassium Channels. Frontiers in Molecular Neuroscience, 2018, 11, 301.	1.4	24
15	Recombinant tandem of pore-domains in a Weakly Inward rectifying K+ channel 2 (TWIK2) forms active lysosomal channels. Scientific Reports, 2017, 7, 649.	1.6	22
16	Development of the First Two-Pore Domain Potassium Channel TWIK-Related K ⁺ Channel 1-Selective Agonist Possessing in Vivo Antinociceptive Activity. Journal of Medicinal Chemistry, 2017, 60, 1076-1088.	2.9	46
17	Hyperoxia treatment of TREK-1/TREK-2/TRAAK-deficient mice is associated with a reduction in surfactant proteins. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L1030-L1046.	1.3	23
18	Abnormal respiration under hyperoxia in TASK-1/3 potassium channel double knockout mice. Respiratory Physiology and Neurobiology, 2017, 244, 17-25.	0.7	6

#	Article	IF	CITATIONS
19	Mixing and matching TREK/TRAAK subunits generate heterodimeric K _{2P} channels with unique properties. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4200-4205.	3.3	66
20	In cellulo phosphorylation induces pharmacological reprogramming of maurocalcin, a cell-penetrating venom peptide. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2460-8.	3.3	7
21	The two-pore domain potassium channel, TWIK-1, has a role in the regulation of heart rate and atrial size. Journal of Molecular and Cellular Cardiology, 2016, 97, 24-35.	0.9	28
22	Perspectives on the Two-Pore Domain Potassium Channel TREK-1 (TWIK-Related K ⁺ Channel) Tj ETQ	q0,0,0 rgB 2.9	T /Overlock 1 45
23	Phospholipase D2 Specifically Regulates TREK Channels via Direct Interaction and Local Production of Phosphatidic Acid. Biophysical Journal, 2015, 108, 436a.	0.2	0
24	The family of K _{2P} channels: salient structural and functional properties. Journal of Physiology, 2015, 593, 2587-2603.	1.3	178
25	Silent but not dumb: how cellular trafficking and pore gating modulate expression of TWIK1 and THIK2. Pflugers Archiv European Journal of Physiology, 2015, 467, 1121-1131.	1.3	18
26	Activation of Neurotensin Receptor 1 Facilitates Neuronal Excitability and Spatial Learning and Memory in the Entorhinal Cortex: Beneficial Actions in an Alzheimer's Disease Model. Journal of Neuroscience, 2014, 34, 7027-7042.	1.7	45
97	Phospholipase D2 specifically regulates TREK potassium channels via direct interaction and local production of phosphatidic acid. Proceedings of the National Academy of Sciences of the United	QQ	47

28	Synthesis and structure–activity relationship study of substituted caffeate esters as antinociceptive agents modulating the TREK-1 channel. European Journal of Medicinal Chemistry, 2014, 75, 391-402.	2.6	31
29	Altered and dynamic ion selectivity of K+ channels in cell development and excitability. Trends in Pharmacological Sciences, 2014, 35, 461-469.	4.0	29
30	Tandem Pore Domain Halothane-inhibited K+ Channel Subunits THIK1 and THIK2 Assemble and Form Active Channels. Journal of Biological Chemistry, 2014, 289, 28202-28212.	1.6	36
31	Role of the TREK2 potassium channel in cold and warm thermosensation and in pain perception. Pain, 2014, 155, 2534-2544.	2.0	112
32	The Thermosensitive Potassium Channel TREK-1 Contributes to Coolness-Evoked Responses of Grueneberg Ganglion Neurons. Cellular and Molecular Neurobiology, 2014, 34, 113-122.	1.7	20
33	An Ion Channel Chip for Diagnosis and Prognosis of Autoimmune Neurological Disorders. Recent Patents on CNS Drug Discovery, 2014, 8, 171-179.	0.9	0
34	TASKâ€⊋ channels contribute to pH sensitivity of retrotrapezoid nucleus chemoreceptor neurons (872.4). FASEB Journal, 2014, 28, 872.4.	0.2	0
35	Kv1.1 Channels Act as Mechanical Brake in the Senses of Touch and Pain. Neuron, 2013, 77, 899-914.	3.8	120

States of America, 2014, 111, 13547-13552.

³⁶Severe Hyperaldosteronism in Neonatal Task3 Potassium Channel Knockout Mice Is Associated With
Activation of the Intraadrenal Renin-Angiotensin System. Endocrinology, 2013, 154, 2712-2722.1.435

#	Article	IF	CITATIONS
37	Silencing of the Tandem Pore Domain Halothane-inhibited K+ Channel 2 (THIK2) Relies on Combined Intracellular Retention and Low Intrinsic Activity at the Plasma Membrane. Journal of Biological Chemistry, 2013, 288, 35081-35092.	1.6	25
38	TASK-2 Channels Contribute to pH Sensitivity of Retrotrapezoid Nucleus Chemoreceptor Neurons. Journal of Neuroscience, 2013, 33, 16033-16044.	1.7	98
39	The contribution of TWIK-1 channels to astrocyte K+ current is limited by retention in intracellular compartments. Frontiers in Cellular Neuroscience, 2013, 7, 246.	1.8	34
40	Cacnb4 directly couples electrical activity to gene expression, a process defective in juvenile epilepsy. EMBO Journal, 2012, 31, 3730-3744.	3.5	57
41	Task3 Potassium Channel Gene Invalidation Causes Low Renin and Salt-Sensitive Arterial Hypertension. Endocrinology, 2012, 153, 4740-4748.	1.4	63
42	TWIK1, a unique background channel with variable ion selectivity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5499-5504.	3.3	85
43	Mechanoprotection by Polycystins against Apoptosis Is Mediated through the Opening of Stretch-Activated K2P Channels. Cell Reports, 2012, 1, 241-250.	2.9	54
44	Behavioral characterization of mice lacking Trek channels. Frontiers in Behavioral Neuroscience, 2012, 6, 60.	1.0	30
45	Molecular Physiology of pH-Sensitive Background K _{2P} Channels. Physiology, 2011, 26, 424-437.	1.6	71
46	Molecular regulations governing TREK and TRAAK channel functions. Channels, 2011, 5, 402-409.	1.5	133
47	Glucoseâ€induced inhibition: how many ionic mechanisms?. Acta Physiologica, 2010, 198, 295-301.	1.8	23
48	Potassium Channel Silencing by Constitutive Endocytosis and Intracellular Sequestration. Journal of Biological Chemistry, 2010, 285, 4798-4805.	1.6	57
49	Task2 potassium channels set central respiratory CO ₂ and O ₂ sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2325-2330.	3.3	132
50	Membrane Trafficking Controls K2P1/TWIK1 Channel Expression at the Cell Surface. Biophysical Journal, 2010, 98, 537a.	0.2	0
51	Glucose Inhibition Persists in Hypothalamic Neurons Lacking Tandem-Pore K+ Channels. Journal of Neuroscience, 2009, 29, 2528-2533.	1.7	69
52	Extracellular acidification exerts opposite actions on TREK1 and TREK2 potassium channels via a single conserved histidine residue. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14628-14633.	3.3	122
53	Invalidation of TASK1 potassium channels disrupts adrenal gland zonation and mineralocorticoid homeostasis. EMBO Journal, 2008, 27, 179-187.	3.5	168
54	Protein Complex Analysis of Native Brain Potassium Channels by Proteomics. Methods in Molecular Biology, 2008, 491, 113-123.	0.4	7

#	Article	IF	CITATIONS
55	Mtap2 Is a Constituent of the Protein Network That Regulates Twik-Related K ⁺ Channel Expression and Trafficking. Journal of Neuroscience, 2008, 28, 8545-8552.	1.7	53
56	Does Sumoylation Control K2P1/TWIK1 Background K+ Channels?. Cell, 2007, 130, 563-569.	13.5	75
57	AKAP150, a switch to convert mechano-, pH- and arachidonic acid-sensitive TREK K+ channels into open leak channels. EMBO Journal, 2006, 25, 5864-5872.	3.5	101
58	Membrane Potential-regulated Transcription of the Resting K+ Conductance TASK-3 via the Calcineurin Pathway. Journal of Biological Chemistry, 2006, 281, 28910-28918.	1.6	30
59	Fetal brain hypometabolism during prolonged hypoxaemia in the llama. Journal of Physiology, 2005, 567, 963-975.	1.3	27
60	International Union of Pharmacology. LV. Nomenclature and Molecular Relationships of Two-P Potassium Channels. Pharmacological Reviews, 2005, 57, 527-540.	7.1	270
61	Antiepileptic popular ketogenic diet: emerging twists in an ancient story. Progress in Neurobiology, 2005, 75, 1-28.	2.8	56
62	Association of Â-catenin with the Â-subunit of neuronal large-conductance Ca2+-activated K+ channels. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 671-675.	3.3	36
63	Proximal renal tubular acidosis in TASK2 K+ channel-deficient mice reveals a mechanism for stabilizing bicarbonate transport. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8215-8220.	3.3	117
64	ARF6â€dependent interaction of the TWIK1 K + channel with EFA6, a GDP/GTP exchange factor for ARF6. EMBO Reports, 2004, 5, 1171-1175.	2.0	64
65	Localization of TREK-1, a two-pore-domain K+ channel in the peripheral vestibular system of mouse and rat. Brain Research, 2004, 1017, 46-52.	1.1	12
66	Mechanisms underlying excitatory effects of group I metabotropic glutamate receptors via inhibition of 2P domain K+ channels. EMBO Journal, 2003, 22, 5403-5411.	3.5	171
67	Pharmacology of neuronal background potassium channels. Neuropharmacology, 2003, 44, 1-7.	2.0	237
68	Role of TASK2 Potassium Channels Regarding Volume Regulation in Primary Cultures of Mouse Proximal Tubules. Journal of General Physiology, 2003, 122, 177-190.	0.9	87
69	International Union of Pharmacology. XLI. Compendium of Voltage-Gated Ion Channels: Potassium Channels. Pharmacological Reviews, 2003, 55, 583-586.	7.1	358
70	Direct interaction with a nuclear protein and regulation of gene silencing by a variant of the Ca2+-channel Â4 subunit. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 307-312.	3.3	103
71	Expression and Localization of TREK-1 K ⁺ Channels in Human Odontoblasts. Journal of Dental Research, 2003, 82, 542-545.	2.5	68
72	RIM Binding Proteins (RBPs) Couple Rab3-Interacting Molecules (RIMs) to Voltage-Gated Ca2+ Channels. Neuron, 2002, 34, 411-423.	3.8	270

#	Article	IF	CITATIONS
73	Genomic and Functional Characteristics of Novel Human Pancreatic 2P Domain K+ Channels. Biochemical and Biophysical Research Communications, 2001, 282, 249-256.	1.0	157
74	A TREK-1–Like Potassium Channel in Atrial Cells Inhibited by β-Adrenergic Stimulation and Activated by Volatile Anesthetics. Circulation Research, 2001, 89, 336-342.	2.0	135
75	Axonal transport of TREK and TRAAK potassium channels in rat sciatic nerves. NeuroReport, 2000, 11, 927-930.	0.6	24
76	TREK-1 is a heat-activated background K+ channel. EMBO Journal, 2000, 19, 2483-2491.	3.5	431
77	Molecular and functional properties of two-pore-domain potassium channels. American Journal of Physiology - Renal Physiology, 2000, 279, F793-F801.	1.3	518
78	Human TREK2, a 2P Domain Mechano-sensitive K+Channel with Multiple Regulations by Polyunsaturated Fatty Acids, Lysophospholipids, and Gs, Gi, and Gq Protein-coupled Receptors. Journal of Biological Chemistry, 2000, 275, 28398-28405.	1.6	284
79	Lysophospholipids Open the Two-pore Domain Mechano-gated K+ Channels TREK-1 and TRAAK. Journal of Biological Chemistry, 2000, 275, 10128-10133.	1.6	320
80	TASK (TWIK–Related Acid-Sensitive K+ Channel) Is Expressed in Glomerulosa Cells of Rat Adrenal Cortex and Inhibited by Angiotensin II. Molecular Endocrinology, 2000, 14, 863-874.	3.7	130
81	Cloning and expression of human TRAAK, a polyunsaturated fatty acids-activated and mechano-sensitive K+ channel. FEBS Letters, 2000, 471, 137-140.	1.3	105
82	TASK (TWIK-Related Acid-Sensitive K+ Channel) Is Expressed in Glomerulosa Cells of Rat Adrenal Cortex and Inhibited by Angiotensin II. Molecular Endocrinology, 2000, 14, 863-874.	3.7	92
83	Cloning of a New Mouse Two-P Domain Channel Subunit and a Human Homologue with a Unique Pore Structure. Journal of Biological Chemistry, 1999, 274, 11751-11760.	1.6	108
84	Mechano- or Acid Stimulation, Two Interactive Modes of Activation of the TREK-1 Potassium Channel. Journal of Biological Chemistry, 1999, 274, 26691-26696.	1.6	366
85	TRAAK Is a Mammalian Neuronal Mechano-gated K+Channel. Journal of Biological Chemistry, 1999, 274, 1381-1387.	1.6	317
86	A Novel Mammalian Lithium-sensitive Enzyme with a Dual Enzymatic Activity, 3′-Phosphoadenosine 5′-Phosphate Phosphatase and Inositol-polyphosphate 1-Phosphatase. Journal of Biological Chemistry, 1999, 274, 16034-16039.	1.6	62
87	Inhalational anesthetics activate two-pore-domain background K+ channels. Nature Neuroscience, 1999, 2, 422-426.	7.1	606
88	Immunolocalization of the arachidonic acid and mechanosensitive baseline TRAAK potassium channel in the nervous system. Neuroscience, 1999, 95, 893-901.	1.1	56
89	Chapter 12 Potassium Channels with Two P Domains. Current Topics in Membranes, 1999, 46, 199-222.	0.5	15
90	A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids. EMBO Journal, 1998, 17, 3297-3308.	3.5	418

#	Article	IF	CITATIONS
91	A mammalian two pore domain mechano-gated S-like K+ channel. EMBO Journal, 1998, 17, 4283-4290.	3.5	572
92	Structure, chromosome localization, and tissue distribution of the mouse twik K+ channel gene. FEBS Letters, 1998, 425, 310-316.	1.3	33
93	Mapping of Human Potassium Channel Genes TREK-1 (KCNK2) and TASK (KCNK3) to Chromosomes 1q41 and 2p23. Genomics, 1998, 51, 478-479.	1.3	23
94	Cloning and Expression of a Novel pH-sensitive Two Pore Domain K+ Channel from Human Kidney. Journal of Biological Chemistry, 1998, 273, 30863-30869.	1.6	319
95	An immunocytochemical study of a G-proteingated inward rectifier K+ channel (GIRK2) in the weaver mouse mesencephalon. NeuroReport, 1997, 8, 969-974.	0.6	15
96	TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO Journal, 1997, 16, 5464-5471.	3.5	568
97	The structure, function and distribution of the mouse TWIK-1 K+ channel. FEBS Letters, 1997, 402, 28-32.	1.3	109
98	An immunocytochemical study on the distribution of two G-protein-gated inward rectifier potassium channels (GIRK2 and GIRK4) in the adult rat brain. Neuroscience, 1997, 80, 345-357.	1.1	84
99	Comparative expression of the inward rectifier K+ channel GIRK2 in the cerebellum of normal and weaver mutant mice. Brain Research, 1997, 753, 8-17.	1.1	35
100	Dominant negative chimeras provide evidence for homo and heteromultimeric assembly of inward rectifier K+channel proteins via their N-terminal end. FEBS Letters, 1996, 378, 64-68.	1.3	41
101	Assignment of the Human Weak Inward Rectifier K+Channel TWIK-1 Gene to Chromosome 1q42–q43. Genomics, 1996, 34, 153-155.	1.3	13
102	Inner Ear Defects Induced by Null Mutationof the isk Gene. Neuron, 1996, 17, 1251-1264.	3.8	380
103	A pH-sensitive Yeast Outward Rectifier K+ Channel with Two Pore Domains and Novel Gating Properties. Journal of Biological Chemistry, 1996, 271, 4183-4187.	1.6	104
104	Dimerization of TWIK-1 K+ channel subunits via a disulfide bridge EMBO Journal, 1996, 15, 6400-6407.	3.5	156
105	Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel EMBO Journal, 1996, 15, 6854-6862.	3.5	438
106	KvLQT1 and IsK (minK) proteins associate to form the IKS cardiac potassium current. Nature, 1996, 384, 78-80.	13.7	1,552
107	A New K+ Channel β Subunit to Specifically Enhance Kv2.2 (CDRK) Expression. Journal of Biological Chemistry, 1996, 271, 26341-26348.	1.6	92
108	Molecular Properties of Neuronal G-protein-activated Inwardly Rectifying K+ Channels. Journal of Biological Chemistry, 1995, 270, 28660-28667.	1.6	232

#	ARTICLE	IF	CITATIONS
109	Heterologous Multimeric Assembly Is Essential for K+ Channel Activity of Neuronal and Cardiac G-Protein-Activated Inward Rectifiers. Biochemical and Biophysical Research Communications, 1995, 212, 657-663.	1.0	150
110	Assignment of Human G-Protein-Coupled Inward Rectifier K+Channel Homolog GIRK3 Gene to Chromosome 1q21–q23. Genomics, 1995, 29, 808-809.	1.3	14
111	Susceptibility of cloned K+ channels to reactive oxygen species Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 11796-11800.	3.3	171
112	Expression cloning in K\$transport defective yeast and distribution of HBP1, a new putative HMG transcriptional regulator. Nucleic Acids Research, 1994, 22, 3685-3688.	6.5	45
113	External blockade of the major cardiac delayed-rectifier K+ channel (Kv1.5) by polyunsaturated fatty acids Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 1937-1941.	3.3	189
114	Molecular biology of voltageâ€gated K+ channels in heart. Fundamental and Clinical Pharmacology, 1994, 8, 108-116.	1.0	6
115	Cloning provides evidence for a family of inward rectifier and G-protein coupled K+ channels in the brain. FEBS Letters, 1994, 353, 37-42.	1.3	271
116	Injection of a K+channel (Kv1.3) cRNA in fertilized eggs leads to functional expression in cultured myotomal muscle cells fromXenopusembryos. FEBS Letters, 1994, 348, 259-262.	1.3	7
117	The protein IsK is a dual activator of K+ and Clâ^ channels. Nature, 1993, 365, 850-852.	13.7	139
118	Localization of a Potassium Channel Gene (KCNE1) to 21q22.1-q22.2 by in Situ Hybridization and Somatic Cell Hybridization. Genomics, 1993, 15, 243-245.	1.3	28
119	Receptor-mediated regulation of IsK, a very slowly activating, voltage-dependent K+ channel in Xenopus oocytes. Biochemical and Biophysical Research Communications, 1992, 184, 1135-1141.	1.0	19
120	Effects of the level of mRNA expression on biophysical properties, sensitivity to neurotoxins, and regulation of the brain delayed-rectifier K+ channel Kv1.2. Biochemistry, 1992, 31, 12463-12468.	1.2	70
121	Regulation of a major cloned voltage‐gated K+channel from human T lymphocytes. FEBS Letters, 1992, 303, 229-232.	1.3	34
122	ISK, a slowly activating voltage-sensitive K+channel Characterization of multiple cDNAs and gene organization in the mouse. FEBS Letters, 1992, 301, 168-172.	1.3	31
123	Developmental expression of voltage-sensitive K+channels in mouse skeletal muscle and C2C12cells. FEBS Letters, 1992, 310, 162-166.	1.3	51