Sofiya Kolusheva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4505244/publications.pdf

Version: 2024-02-01

95 papers 4,897 citations

36 h-index 95266 68 g-index

99 all docs 99 docs citations

99 times ranked 5775 citing authors

#	Article	IF	Citations
1	Carbohydrate Biosensors. Chemical Reviews, 2004, 104, 5987-6016.	47.7	337
2	Self-assembling dipeptide antibacterial nanostructures with membrane disrupting activity. Nature Communications, 2017, 8, 1365.	12.8	299
3	Carbohydrate Biosensors. ChemInform, 2005, 36, no.	0.0	223
4	Cation-Selective Color Sensors Composed of Ionophoreâ^'Phospholipidâ^'Polydiacetylene Mixed Vesicles. Journal of the American Chemical Society, 2000, 122, 776-780.	13.7	217
5	A colorimetric assay for rapid screening of antimicrobial peptides. Nature Biotechnology, 2000, 18, 225-227.	17.5	209
6	Green synthesis of gold nanoparticles using plant extracts as reducing agents. International Journal of Nanomedicine, 2014, 9, 4007.	6.7	209
7	The Human Islet Amyloid Polypeptide Forms Transient Membrane-Active Prefibrillar Assemblies. Biochemistry, 2003, 42, 10971-10977.	2.5	168
8	Rapid Colorimetric Detection of Antibodyâ $^{\circ}$ Epitope Recognition at a Biomimetic Membrane Interface. Journal of the American Chemical Society, 2001, 123, 417-422.	13.7	166
9	Peptideâ^'Membrane Interactions Studied by a New Phospholipid/Polydiacetylene Colorimetric Vesicle Assayâ€. Biochemistry, 2000, 39, 15851-15859.	2.5	162
10	Colorimetric Polydiacetylene–Aerogel Detector for Volatile Organic Compounds (VOCs). ACS Applied Materials & Detector for Volatile Organic Compounds (VOCs). ACS Applied Materials & Detector for Volatile Organic Compounds (VOCs). ACS Applied Materials & Detector for Volatile Organic Compounds (VOCs). ACS Applied Materials & Detector for Volatile Organic Compounds (VOCs). ACS Applied Materials & Detector for Volatile Organic Compounds (VOCs). ACS Applied Materials & Detector for Volatile Organic Compounds (VOCs). ACS Applied Materials & Detector for Volatile Organic Compounds (VOCs). ACS Applied Materials & Detector for Volatile Organic Compounds (VOCs). ACS Applied Materials & Detector for Volatile Organic Compounds (VOCs). ACS Applied Materials & Detector for Volatile Organic Compounds (VOCs). ACS Applied Materials & Detector for Volatile Organic Compounds (VOCs). ACS Applied Materials & Detector for Volatile Organic Compounds (VOCs). ACS Applied Materials & Detector for Volatile Organic Compounds (VOCs). ACS Applied Organic Compounds (VOC	8.0	139
11	Color Fingerprinting of Proteins by Calixarenes Embedded in Lipid/Polydiacetylene Vesicles. Journal of the American Chemical Society, 2006, 128, 13592-13598.	13.7	130
12	Polymerized lipid vesicles as colorimetric biosensors for biotechnological applications. Biotechnology Advances, 2001, 19, 109-118.	11.7	124
13	Selective Detection of Catecholamines by Synthetic Receptors Embedded in Chromatic Polydiacetylene Vesicles. Journal of the American Chemical Society, 2005, 127, 10000-10001.	13.7	102
14	Membrane interactions of ionic liquids: Possible determinants for biological activity and toxicity. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2967-2974.	2.6	102
15	Interactions of Mouse Paneth Cell α-Defensins and α-Defensin Precursors with Membranes. Journal of Biological Chemistry, 2003, 278, 13838-13846.	3.4	96
16	Chiral modulation of amyloid beta fibrillation and cytotoxicity by enantiomeric carbon dots. Chemical Communications, 2018, 54, 7762-7765.	4.1	95
17	Rapid Chromatic Detection of Bacteria by Use of a New Biomimetic Polymer Sensor. Applied and Environmental Microbiology, 2006, 72, 7339-7344.	3.1	85
18	Dynamics of Photoinduced Degradation of Perovskite Photovoltaics: From Reversible to Irreversible Processes. ACS Applied Energy Materials, 2018, 1, 799-806.	5.1	85

#	Article	IF	Citations
19	Membrane analysis with amphiphilic carbon dots. Chemical Communications, 2014, 50, 10299-10302.	4.1	84
20	Poly(methyl methacrylate)-Supported Polydiacetylene Films: Unique Chromatic Transitions and Molecular Sensing. ACS Applied Materials & Samp; Interfaces, 2014, 6, 8613-8620.	8.0	70
21	Colorimetric Detection and Fingerprinting of Bacteria by Glass-Supported Lipid/Polydiacetylene Films. Langmuir, 2007, 23, 4682-4687.	3.5	69
22	Intrinsic Fluorescence of Metabolite Amyloids Allows Labelâ€Free Monitoring of Their Formation and Dynamics in Live Cells. Angewandte Chemie - International Edition, 2018, 57, 12444-12447.	13.8	67
23	Structure-Activity Determinants in Paneth Cell α-Defensins. Journal of Biological Chemistry, 2004, 279, 11976-11983.	3.4	63
24	Bacoside-A, an Indian Traditional-Medicine Substance, Inhibits \hat{I}^2 -Amyloid Cytotoxicity, Fibrillation, and Membrane Interactions. ACS Chemical Neuroscience, 2017, 8, 884-891.	3.5	60
25	Visualization of Membrane Processes in Living Cells by Surfaceâ€Attached Chromatic Polymer Patches. Angewandte Chemie - International Edition, 2005, 44, 1092-1096.	13.8	59
26	Biomimetic lipid/polymer colorimetric membranes. Journal of Lipid Research, 2003, 44, 65-71.	4.2	58
27	Investigations of antimicrobial peptides in planar film systems. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 1393-1407.	2.6	58
28	Membrane binding and permeation by indolicidin analogs studied by a biomimetic lipid/polydiacetylene vesicle assay. Peptides, 2003, 24, 1753-1761.	2.4	57
29	Quantitative interactions between cryptdin-4 amino terminal variants and membranes. Peptides, 2003, 24, 1795-1805.	2.4	53
30	Lipid binding and membrane penetration of polymyxin B derivatives studied in a biomimetic vesicle system. Biochemical Journal, 2003, 375, 405-413.	3.7	53
31	Biomolecular Sensing with Colorimetric Vesicles. , 2007, , 155-180.		52
32	Membrane Interactions of Host-defense Peptides Studied in Model Systems. Current Protein and Peptide Science, 2005, 6, 103-114.	1.4	50
33	Selective Labeling and Growth Inhibition of <i>Pseudomonas aeruginosa</i> by Aminoguanidine Carbon Dots. ACS Infectious Diseases, 2019, 5, 292-302.	3.8	50
34	Rapid Colorimetric Screening of Drug Interaction and Penetration Through Lipid Barriers. Pharmaceutical Research, 2006, 23, 580-588.	3.5	48
35	A new colorimetric assay for studying and rapid screening of membrane penetration enhancers. Pharmaceutical Research, 2001, 18, 943-949.	3.5	47
36	Imaging <i>Pseudomonas aeruginosa</i> Biofilm Extracellular Polymer Scaffolds with Amphiphilic Carbon Dots. ACS Chemical Biology, 2016, 11, 1265-1270.	3.4	43

#	Article	IF	CITATIONS
37	Cation Diffusion Facilitators Transport Initiation and Regulation Is Mediated by Cation Induced Conformational Changes of the Cytoplasmic Domain. PLoS ONE, 2014, 9, e92141.	2.5	41
38	Structure–function studies of the magnetite-biomineralizing magnetosome-associated protein MamC. Journal of Structural Biology, 2016, 194, 244-252.	2.8	40
39	Bilayer localization of membrane-active peptides studied in biomimetic vesicles by visible and fluorescence spectroscopies. FEBS Journal, 2003, 270, 4478-4487.	0.2	36
40	Detection and analysis of membrane interactions by a biomimetic colorimetric lipid/polydiacetylene assay. Analytical Biochemistry, 2003, 319, 96-104.	2.4	34
41	Glass-supported lipid/polydiacetylene films for colour sensing of membrane-active compounds. Biosensors and Bioelectronics, 2007, 22, 3247-3251.	10.1	34
42	Aggregation of Oligoarginines at Phospholipid Membranes: Molecular Dynamics Simulations, Time-Dependent Fluorescence Shift, and Biomimetic Colorimetric Assays. Journal of Physical Chemistry B, 2013, 117, 11530-11540.	2.6	34
43	Microscopic Visualization of Alamethicin Incorporation into Model Membrane Monolayers. Langmuir, 2004, 20, 11084-11091.	3.5	32
44	Lipid-Bilayer Dynamics Probed by a Carbon Dot-Phospholipid Conjugate. Biophysical Journal, 2016, 110, 2016-2025.	0.5	31
45	Pardaxin, a fish toxin peptide interaction with a biomimetic phospholipid/polydiacetylene membrane assay. Peptides, 2008, 29, 1620-1625.	2.4	30
46	Membrane interactions and lipid binding of casein oligomers and early aggregates. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2341-2349.	2.6	30
47	Lipid/Polydiacetylene Films for Colorimetric Protein Surface-Charge Analysis. Analytical Chemistry, 2008, 80, 7804-7811.	6.5	28
48	Toxicity Inhibitors Protect Lipid Membranes from Disruption by Al 2 42. ACS Chemical Neuroscience, 2015, 6, 1860-1869.	3.5	28
49	Bolaamphiphilic vesicles encapsulating iron oxide nanoparticles: New vehicles for magnetically targeted drug delivery. International Journal of Pharmaceutics, 2013, 450, 241-249.	5.2	26
50	Membrane Interactions of Novicidin, a Novel Antimicrobial Peptide: Phosphatidylglycerol Promotes Bilayer Insertion. Journal of Physical Chemistry B, 2010, 114, 11053-11060.	2.6	25
51	Lipid Bilayers Significantly Modulate Cross-Fibrillation of Two Distinct Amyloidogenic Peptides. Journal of the American Chemical Society, 2013, 135, 13582-13589.	13.7	25
52	Highly-doped Nd:YAG ceramics fabricated by conventional and high pressure SPS. Ceramics International, 2019, 45, 12279-12284.	4.8	24
53	Arachidonic acid is important for efficient use of light by the microalga Lobosphaera incisa under chilling stress. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 853-868.	2.4	23
54	Lysineâ€Derived Carbon Dots for Chiral Inhibition of Prion Peptide Fibril Assembly. Advanced Therapeutics, 2018, 1, 1800006.	3.2	23

#	Article	IF	Citations
55	Phospholipid-Induced Fibrillation of a Prion Amyloidogenic Determinant at the Air/Water Interface. Langmuir, 2009, 25, 12501-12506.	3.5	22
56	Some Phorbol Esters Might Partially Resemble Bryostatin 1 in their Actions on LNCaP Prostate Cancer Cells and U937 Leukemia Cells. ChemBioChem, 2011, 12, 1242-1251.	2.6	22
57	Understanding the Biomineralization Role of Magnetite-Interacting Components (MICs) From Magnetotactic Bacteria. Frontiers in Microbiology, 2018, 9, 2480.	3.5	21
58	Metabolite amyloid-like fibrils interact with model membranes. Chemical Communications, 2018, 54, 4561-4564.	4.1	20
59	Bacoside-A, an anti-amyloid natural substance, inhibits membrane disruption by the amyloidogenic determinant of prion protein through accelerating fibril formation. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2208-2214.	2.6	18
60	Unilamellar Vesicles from Amphiphilic Graphene Quantum Dots. Chemistry - A European Journal, 2015, 21, 7755-7759.	3.3	16
61	Membrane anchoring of diacylglycerol lactones substituted with rigid hydrophobic acyl domains correlates with biological activities. FEBS Journal, 2010, 277, 233-243.	4.7	15
62	N-terminal aromatic residues closely impact the cytolytic activity of cupiennin 1a, a major spider venom peptide. Toxicon, 2013, 75, 177-186.	1.6	15
63	Membrane Interactions and Metal Ion Effects on Bilayer Permeation of the Lipophilic Ion Modulator DP-109. Biochemistry, 2005, 44, 12077-12085.	2.5	13
64	Chromatic Dendrimer/Polydiacetylene Nanoparticles. ACS Applied Polymer Materials, 2021, 3, 2931-2937.	4.4	12
65	Screening Membrane Interactions of Pesticides by Cells Decorated with Chromatic Polymer Nanopatches. Chemical Research in Toxicology, 2009, 22, 90-96.	3.3	11
66	Synthesis, biological, and biophysical studies of DAG-indololactones designed as selective activators of RasGRP. Bioorganic and Medicinal Chemistry, 2014, 22, 3123-3140.	3.0	11
67	Nanoparticles modulate membrane interactions of human Islet amyloid polypeptide (hIAPP). Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1810-1817.	2.6	11
68	Cardiolipin mediates curcumin interactions with mitochondrial membranes. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 75-82.	2.6	11
69	Imaging membrane processes in erythrocyte ghosts by surface fusion of a chromatic polymer. Analytical Biochemistry, 2006, 348, 151-153.	2.4	10
70	Structure and membrane-targeting of a Bordetella pertussis effector N-terminal domain. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 183054.	2.6	10
71	Membrane processes and biophysical characterization of living cells decorated with chromatic polydiacetylene vesicles. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1335-1343.	2.6	9
72	<i>N</i> â€Methylâ€Substituted Fluorescent DAGâ€"Indololactone Isomers Exhibit Dramatic Differences in Membrane Interactions and Biological Activity. ChemBioChem, 2011, 12, 2331-2340.	2.6	9

#	Article	IF	Citations
73	Biofilm Formation on Chromatic Sol–Gel/Polydiacetylene Films. ChemPlusChem, 2012, 77, 752-757.	2.8	9
74	Metal binding to the dynamic cytoplasmic domain of the cation diffusion facilitator (CDF) protein MamM induces a †lockedâ€in' configuration. FEBS Journal, 2019, 286, 2193-2215.	4.7	9
75	Conformationally Constrained Analogues of Diacylglycerol (DAG). 31. Modulation of the Biological Properties of Diacylgycerol Lactones (DAG-lactones) Containing Rigid-Rod Acyl Groups Separated from the Core Lactone by Spacer Units of Different Lengths. Journal of Medicinal Chemistry, 2009, 52, 3274-3283.	6.4	8
76	BtcA, A Class IA Type III Chaperone, Interacts with the BteA N-Terminal Domain through a Globular/Non-Globular Mechanism. PLoS ONE, 2013, 8, e81557.	2.5	8
77	Polydiacetylene-supported silica films formed at the air/water interface. Journal of Colloid and Interface Science, 2011, 364, 428-434.	9.4	7
78	Tyrosine carbon dots inhibit fibrillation and toxicity of the human islet amyloid polypeptide. Nanoscale Advances, 2020, 2, 5866-5873.	4.6	7
79	Colorimetric Polymer Assay for the Diagnosis of Plasma Lipids Atherogenic Quality in Hypercholesterolemic Patients. Molecular Diagnosis and Therapy, 2015, 19, 35-43.	3.8	6
80	Lipoprotein interactions with chromatic membranes as a novel marker for oxidative stress-related diseases. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 2436-2443.	2.6	5
81	A Novel "Reactomics―Approach for Cancer Diagnostics. Sensors, 2012, 12, 5572-5585.	3.8	5
82	Characterization of the N-Terminal Domain of BteA: A Bordetella Type III Secreted Cytotoxic Effector. PLoS ONE, 2013, 8, e55650.	2.5	5
83	Ultrashort Cell-Penetrating Peptides for Enhanced Sonophoresis-Mediated Transdermal Transport. ACS Applied Bio Materials, 2020, 3, 8395-8401.	4.6	5
84	Peptide Self-Assembly Is Linked to Antibacterial, but Not Antifungal, Activity of Histatin 5 Derivatives. MSphere, 2020, 5, .	2.9	5
85	Intrinsic Fluorescence of Metabolite Amyloids Allows Labelâ€Free Monitoring of Their Formation and Dynamics in Live Cells. Angewandte Chemie, 2018, 130, 12624-12627.	2.0	4
86	Vesicle-Based Assays to Study Membrane Interactions of Amyloid Peptides. Methods in Molecular Biology, 2019, 1873, 39-51.	0.9	4
87	Visualization of Membrane Processes in Living Cells by Surfaceâ€Attached Chromatic Polymer Patches. Angewandte Chemie, 2005, 117, 1116-1120.	2.0	3
88	Chromatic polymer assays for the analysis of lipid and lipoprotein peroxidation. Lipid Technology, 2015, 27, 86-89.	0.3	3
89	A Surface Study of Ultrathin Ceria Nanoparticles Decorated with Transitionâ€Metal Ions. Particle and Particle Systems Characterization, 2019, 36, 1800452.	2.3	3
90	The cation diffusion facilitator protein MamM's cytoplasmic domain exhibits metal-type dependent binding modes and discriminates against Mn2+. Journal of Biological Chemistry, 2020, 295, 16614-16629.	3.4	3

SOFIYA KOLUSHEVA

#	Article	IF	CITATIONS
91	Membraneâ€Surface Anchoring of Charged Diacylglycerolâ€Lactones Correlates with Biological Activities. ChemBioChem, 2010, 11, 2003-2009.	2.6	2
92	The metal binding site composition of the cation diffusion facilitator protein MamM cytoplasmic domain impacts its metal responsivity. Scientific Reports, 2020, 10, 14022.	3.3	2
93	Imaging Flow Cytometry Illuminates New Dimensions of Amyloid Peptide-Membrane Interactions. Biophysical Journal, 2020, 118, 1270-1278.	0.5	2
94	Colorimetric Biosensor Vesicles for Biotechnological Applications. Materials Research Society Symposia Proceedings, 2002, 724, N7.23.1.	0.1	1
95	Inside Cover: Membrane-Surface Anchoring of Charged Diacylglycerol-Lactones Correlates with Biological Activities (ChemBioChem 14/2010). ChemBioChem, 2010, 11, 1926-1926.	2.6	O