Alan J Mccue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4504454/publications.pdf

Version: 2024-02-01

36 papers	1,745 citations	23 h-index	330143 37 g-index
37	37 docs citations	37	2113
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	Directing the H ₂ -driven selective regeneration of NADH <i>via</i> Sn-doped Pt/SiO ₂ . Green Chemistry, 2022, 24, 1451-1455.	9.0	9
2	Highly Selective and Stable Isolated Non-Noble Metal Atom Catalysts for Selective Hydrogenation of Acetylene. ACS Catalysis, 2022, 12, 607-615.	11.2	36
3	Supported Pt Enabled Proton-Driven NAD(P) < sup>+ < /sup> Regeneration for Biocatalytic Oxidation. ACS Applied Materials & amp; Interfaces, 2022, 14, 20943-20952.	8.0	4
4	Metal Phosphides and Sulfides in Heterogeneous Catalysis: Electronic and Geometric Effects. ACS Catalysis, 2021, 11, 9102-9127.	11.2	36
5	Rapid scan FTIR reveals propane (am)oxidation mechanisms over vanadium based catalysts. Journal of Catalysis, 2020, 390, 72-80.	6.2	11
6	Adsorbate-Induced Structural Evolution of Pd Catalyst for Selective Hydrogenation of Acetylene. ACS Catalysis, 2020, 10, 15048-15059.	11.2	50
7	Comparison of Pd and Pd4S based catalysts for partial hydrogenation of external and internal butynes. Journal of Catalysis, 2020, 383, 51-59.	6.2	17
8	Influence of pretreatment on surface interaction between Cu and anatase-TiO2 in the simultaneous photoremediation of nitrate and oxalic acid. Journal of Environmental Chemical Engineering, 2019, 7, 103029.	6.7	10
9	Support morphology-dependent alloying behaviour and interfacial effects of bimetallic Ni–Cu/CeO ₂ catalysts. Chemical Science, 2019, 10, 3556-3566.	7.4	34
10	Combined quantitative FTIR and online GC study of Fischer-Tropsch synthesis involving co-fed ethylene. Journal of Catalysis, 2018, 362, 10-17.	6.2	7
11	Carbon Capture by Metal Oxides: Unleashing the Potential of the (111) Facet. Journal of the American Chemical Society, 2018, 140, 4736-4742.	13.7	83
12	Palladium phosphide nanoparticles as highly selective catalysts for the selective hydrogenation of acetylene. Journal of Catalysis, 2018, 364, 406-414.	6.2	80
13	Evolution of palladium sulfide phases during thermal treatments and consequences for acetylene hydrogenation. Journal of Catalysis, 2018, 364, 204-215.	6.2	58
14	Simultaneous photocatalytic removal of nitrate and oxalic acid over Cu2O/TiO2 and Cu2O/TiO2-AC composites. Applied Catalysis B: Environmental, 2017, 217, 181-191.	20.2	97
15	Quantification of hydrocarbon species on surfaces by combined microbalance-FTIR. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 181, 65-72.	3.9	6
16	Selective hydrogenation of mixed alkyne/alkene streams at elevated pressure over a palladium sulfide catalyst. Journal of Catalysis, 2017, 355, 40-52.	6.2	56
17	Combined quantitative FTIR and online GC study of Fischer-Tropsch catalysts. Journal of Catalysis, 2017, 353, 295-304.	6.2	4
18	Quantification and qualification by in-situ FTIR of species formed on supported-cobalt catalysts during the Fischer-Tropsch reaction. Journal of Catalysis, 2017, 353, 286-294.	6.2	21

#	Article	IF	CITATIONS
19	Rapidâ€Scan Operando Infrared Spectroscopy. ChemCatChem, 2016, 8, 1905-1908.	3.7	8
20	NOx storage and reduction over copper-based catalysts. part 3: Simultaneous NOx and soot removal. Applied Catalysis B: Environmental, 2016, 198, 266-275.	20.2	29
21	Palladium sulphide – A highly selective catalyst for the gas phase hydrogenation of alkynes to alkenes. Journal of Catalysis, 2016, 340, 10-16.	6.2	96
22	Acetylene hydrogenation over structured Au–Pd catalysts. Faraday Discussions, 2016, 188, 499-523.	3.2	30
23	Palladium assisted copper/alumina catalysts for the selective hydrogenation of propyne, propadiene and propene mixed feeds. Chemical Engineering Journal, 2016, 285, 384-391.	12.7	50
24	Quantitative determination of surface species and adsorption sites using Infrared spectroscopy. Catalysis Today, 2016, 259, 19-26.	4.4	32
25	Triphenylphosphine: a ligand for heterogeneous catalysis too? Selectivity enhancement in acetylene hydrogenation over modified Pd/TiO ₂ catalyst. Catalysis Science and Technology, 2015, 5, 2449-2459.	4.1	72
26	Recent advances in selective acetylene hydrogenation using palladium containing catalysts. Frontiers of Chemical Science and Engineering, 2015, 9, 142-153.	4.4	199
27	CO induced surface segregation as a means of improving surface composition and enhancing performance of CuPd bimetallic catalysts. Journal of Catalysis, 2015, 329, 538-546.	6.2	74
28	Palladium–bismuth intermetallic and surface-poisoned catalysts for the semi-hydrogenation of 2-methyl-3-butyn-2-ol. Applied Catalysis A: General, 2015, 497, 22-30.	4.3	47
29	Optimisation of preparation method for Pd doped Cu/Al ₂ O ₃ catalysts for selective acetylene hydrogenation. Catalysis Science and Technology, 2015, 5, 2880-2890.	4.1	80
30	The potential of microbial processes for lignocellulosic biomass conversion to ethanol: a review. Journal of Chemical Technology and Biotechnology, 2015, 90, 366-383.	3.2	72
31	Sulfur as a catalyst promoter or selectivity modifier in heterogeneous catalysis. Catalysis Science and Technology, 2014, 4, 272-294.	4.1	93
32	$\text{Cu/Al}\ 2\ \text{O}\ 3$ catalysts modified with Pd for selective acetylene hydrogenation. Journal of Catalysis, 2014, 319, 127-135.	6.2	163
33	Impact of dendrimer density on epoxide enantioselectivity over an immobilised chiral salen complex. Catalysis Communications, 2014, 43, 159-163.	3.3	8
34	Gold modified cobalt-based Fischer-Tropsch catalysts for conversion of synthesis gas to liquid fuels. Frontiers of Chemical Science and Engineering, 2013, 7, 262-269.	4.4	12
35	Confirmation of Chirality in Homogeneous and Heterogeneous Salenâ€Based Catalysts. ChemCatChem, 2011, 3, 699-703.	3.7	9
36	Aqueous phase hydrogenation of substituted phenyls over carbon nanofibre and activated carbon supported Pd. Journal of Catalysis, 2010, 270, 9-15.	6.2	51