
Joel P Schneider

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4504041/publications.pdf Version: 2024-02-01

IOFI D SCHNEIDED

#	Article	IF	CITATIONS
1	Responsive Hydrogels from the Intramolecular Folding and Self-Assembly of a Designed Peptide. Journal of the American Chemical Society, 2002, 124, 15030-15037.	13.7	851
2	Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7791-7796.	7.1	604
3	Self-assembling peptides and proteins for nanotechnological applications. Current Opinion in Structural Biology, 2004, 14, 480-486.	5.7	435
4	Thermally Reversible Hydrogels via Intramolecular Folding and Consequent Self-Assembly of a de Novo Designed Peptide. Journal of the American Chemical Society, 2003, 125, 11802-11803.	13.7	433
5	Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles. Biomaterials, 2011, 32, 5906-5914.	11.4	418
6	Self-assembling materials for therapeutic delivery. Acta Biomaterialia, 2009, 5, 817-831.	8.3	416
7	Salt-Triggered Peptide Folding and Consequent Self-Assembly into Hydrogels with Tunable Modulus. Macromolecules, 2004, 37, 7331-7337.	4.8	382
8	Templates That Induce .alphaHelical, .betaSheet, and Loop Conformations. Chemical Reviews, 1995, 95, 2169-2187.	47.7	360
9	De Novo Design of Antibacterial β-Peptides. Journal of the American Chemical Society, 1999, 121, 12200-12201.	13.7	358
10	Light-Activated Hydrogel Formation via the Triggered Folding and Self-Assembly of a Designed Peptide. Journal of the American Chemical Society, 2005, 127, 17025-17029.	13.7	347
11	Inherent Antibacterial Activity of a Peptide-Based Î ² -Hairpin Hydrogel. Journal of the American Chemical Society, 2007, 129, 14793-14799.	13.7	316
12	Injectable solid hydrogel: mechanism of shear-thinning and immediate recovery of injectable β-hairpin peptide hydrogels. Soft Matter, 2010, 6, 5143.	2.7	298
13	Injectable bioadhesive hydrogels with innate antibacterial properties. Nature Communications, 2014, 5, 4095.	12.8	276
14	Cytocompatibility of self-assembled \hat{l}^2 -hairpin peptide hydrogel surfaces. Biomaterials, 2005, 26, 5177-5186.	11.4	266
15	Macromolecular diffusion and release from self-assembled β-hairpin peptide hydrogels. Biomaterials, 2009, 30, 1339-1347.	11.4	212
16	Arginine-rich self-assembling peptides as potent antibacterial gels. Biomaterials, 2012, 33, 8907-8916.	11.4	199
17	Laminated Morphology of Nontwisting β-Sheet Fibrils Constructed via Peptide Self-Assembly. Journal of the American Chemical Society, 2005, 127, 16692-16700.	13.7	187
18	Antimicrobial hydrogels for the treatment of infection. Biopolymers, 2013, 100, 637-644.	2.4	178

#	Article	IF	CITATIONS
19	Enhanced Mechanical Rigidity of Hydrogels Formed from Enantiomeric Peptide Assemblies. Journal of the American Chemical Society, 2011, 133, 14975-14977.	13.7	175
20	Tuning the pH Responsiveness of β-Hairpin Peptide Folding, Self-Assembly, and Hydrogel Material Formation. Biomacromolecules, 2009, 10, 2619-2625.	5.4	161
21	The effect of protein structure on their controlled release from an injectable peptide hydrogel. Biomaterials, 2010, 31, 9527-9534.	11.4	157
22	Design of an Injectable βâ€Hairpin Peptide Hydrogel That Kills Methicillinâ€Resistant <i>Staphylococcus aureus</i> . Advanced Materials, 2009, 21, 4120-4123.	21.0	156
23	Anticancer β-Hairpin Peptides: Membrane-Induced Folding Triggers Activity. Journal of the American Chemical Society, 2012, 134, 6210-6217.	13.7	156
24	A multiphase transitioning peptide hydrogel for suturing ultrasmall vessels. Nature Nanotechnology, 2016, 11, 95-102.	31.5	140
25	"Click―Chemistry in a Supramolecular Environment: Stabilization of Organogels by Copper(I)-Catalyzed Azideâ°'Alkyne [3 + 2] Cycloaddition. Journal of the American Chemical Society, 2006, 128, 6056-6057.	13.7	137
26	De Novo Design of Strand-Swapped Î ² -Hairpin Hydrogels. Journal of the American Chemical Society, 2008, 130, 4466-4474.	13.7	136
27	Injectable Solid Peptide Hydrogel as a Cell Carrier: Effects of Shear Flow on Hydrogels and Cell Payload. Langmuir, 2012, 28, 6076-6087.	3.5	127
28	Synthesis and Efficacy of Square Planar Copper Complexes Designed to Nucleate .betaSheet Structure. Journal of the American Chemical Society, 1995, 117, 2533-2546.	13.7	126
29	Zincâ€Triggered Hydrogelation of a Selfâ€Assembling βâ€Hairpin Peptide. Angewandte Chemie - International Edition, 2011, 50, 1577-1579.	13.8	120
30	Molecular structure of monomorphic peptide fibrils within a kinetically trapped hydrogel network. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9816-9821.	7.1	117
31	Correlations between structure, material properties and bioproperties in self-assembled β-hairpin peptide hydrogels. Faraday Discussions, 2008, 139, 251.	3.2	115
32	Semiflexible Chain Networks Formed via Self-Assembly ofÎ ² -Hairpin Molecules. Physical Review Letters, 2004, 93, 268106.	7.8	109
33	Transition state heterogeneity in GCN4 coiled coil folding studied by using multisite mutations and crosslinking. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 10699-10704.	7.1	108
34	Molecular, Local, and Network-Level Basis for the Enhanced Stiffness of Hydrogel Networks Formed from Coassembled Racemic Peptides: Predictions from Pauling and Corey. ACS Central Science, 2017, 3, 586-597.	11.3	107
35	Gelation Kinetics of β-Hairpin Peptide Hydrogel Networks. Macromolecules, 2006, 39, 6608-6614.	4.8	102
36	Controlled biodegradation of Self-assembling β-hairpin Peptide hydrogels by proteolysis with matrix metalloproteinase-13. Biomaterials, 2011, 32, 6471-6477.	11.4	97

#	Article	IF	CITATIONS
37	Self assembled bi-functional peptide hydrogels with biomineralization-directing peptides. Biomaterials, 2010, 31, 7266-7274.	11.4	92
38	Rheology of peptide―and proteinâ€based physical hydrogels: Are everyday measurements just scratching the surface?. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 34-68.	6.1	92
39	Reactive astrocytic S1P3 signaling modulates the blood–tumor barrier in brain metastases. Nature Communications, 2018, 9, 2705.	12.8	91
40	NCI Program for Natural Product Discovery: A Publicly-Accessible Library of Natural Product Fractions for High-Throughput Screening. ACS Chemical Biology, 2018, 13, 2484-2497.	3.4	89
41	Dependence of Self-Assembled Peptide Hydrogel Network Structure on Local Fibril Nanostructure. Macromolecules, 2009, 42, 7137-7145.	4.8	87
42	Design of a Multicompartment Hydrogel that Facilitates Timeâ€Resolved Delivery of Combination Therapy and Synergized Killing of Glioblastoma. Angewandte Chemie - International Edition, 2018, 57, 15040-15044.	13.8	87
43	Direct Observation of Early-Time Hydrogelation in β-Hairpin Peptide Self-Assembly. Macromolecules, 2008, 41, 5763-5772.	4.8	83
44	Folding, Self-Assembly, and Bulk Material Properties of a <i>De Novo</i> Designed Three-Stranded β-Sheet Hydrogel. Biomacromolecules, 2009, 10, 1295-1304.	5.4	82
45	Arsenic(III) Species Inhibit Oxidative Protein Folding <i>in Vitro</i> . Biochemistry, 2009, 48, 424-432.	2.5	82
46	Electrostatic Effects on Ion Selectivity and Rectification in Designed Ion Channel Peptides. Journal of the American Chemical Society, 1997, 119, 3212-3217.	13.7	81
47	Probing the importance of lateral hydrophobic association in self-assembling peptide hydrogelators. European Biophysics Journal, 2006, 35, 162-169.	2.2	79
48	Evolutionâ€Based Design of an Injectable Hydrogel. Advanced Functional Materials, 2012, 22, 529-537.	14.9	77
49	Effects of As(III) Binding on α-Helical Structure. Journal of the American Chemical Society, 2003, 125, 2923-2929.	13.7	76
50	Materials from peptide assembly: towards the treatment of cancer and transmittable disease. Current Opinion in Chemical Biology, 2011, 15, 427-434.	6.1	75
51	Hydroxyapatite Surface-Induced Peptide Folding. Journal of the American Chemical Society, 2007, 129, 5281-5287.	13.7	73
52	Beta Hairpin Peptide Hydrogels as an Injectable Solid Vehicle for Neurotrophic Growth Factor Delivery. Biomacromolecules, 2015, 16, 2672-2683.	5.4	73
53	A Designed Buried Salt Bridge in a Heterodimeric Coiled Coil. Journal of the American Chemical Society, 1997, 119, 5742-5743.	13.7	72
54	Fast Dynamics of Semiflexible Chain Networks of Self-Assembled Peptides. Biomacromolecules, 2009, 10, 1374-1380.	5.4	72

#	Article	IF	CITATIONS
55	Laterally Spaced Linear Nanoparticle Arrays Templated by Laminated βâ€Sheet Fibrils. Advanced Materials, 2008, 20, 447-451.	21.0	69
56	Peptideâ^'Silica Hybrid Networks: Biomimetic Control of Network Mechanical Behavior. ACS Nano, 2010, 4, 181-188.	14.6	69
57	Heavy metal ion hydrogelation of a self-assembling peptideviacysteinyl chelation. Journal of Materials Chemistry, 2012, 22, 1352-1357.	6.7	65
58	Molecular Design of \hat{l}^2 -Hairpin Peptides for Material Construction. MRS Bulletin, 2008, 33, 530-535.	3.5	64
59	Nucleated Antiparallel β-Sheet That Folds and Undergoes Self-Assembly: A Template Promoted Folding Strategy toward Controlled Molecular Architectures. Macromolecules, 1996, 29, 355-366.	4.8	63
60	Sustained release of active chemotherapeutics from injectable-solid β-hairpin peptide hydrogel. Biomaterials Science, 2016, 4, 839-848.	5.4	61
61	Enzymatic Control of the Conformational Landscape of Selfâ€Assembling Peptides. Angewandte Chemie - International Edition, 2018, 57, 11188-11192.	13.8	61
62	Analysis and design of three-stranded coiled coils and three-helix bundles. Folding & Design, 1998, 3, R29-R40.	4.5	57
63	An Intrinsically Disordered Peptide Facilitates Nonâ€Endosomal Cell Entry. Angewandte Chemie - International Edition, 2016, 55, 3369-3372.	13.8	57
64	In vitro assessment of the pro-inflammatory potential of β-hairpin peptide hydrogels. Biomaterials, 2008, 29, 4164-4169.	11.4	54
65	Sequence-Dependent Gelation Kinetics of β-Hairpin Peptide Hydrogels. Macromolecules, 2009, 42, 8443-8450.	4.8	54
66	Anticancer Peptide SVS-1: Efficacy Precedes Membrane Neutralization. Biochemistry, 2012, 51, 6263-6265.	2.5	54
67	<i>De Novo</i> Design of a Shear-Thin Recoverable Peptide-Based Hydrogel Capable of Intrafibrillar Photopolymerization. Macromolecules, 2010, 43, 7924-7930.	4.8	53
68	Engineering Complementary Hydrophobic Interactions to Control β-Hairpin Peptide Self-Assembly, Network Branching, and Hydrogel Properties. Biomacromolecules, 2014, 15, 3891-3900.	5.4	51
69	Identification of a mechanogenetic link between substrate stiffness and chemotherapeutic response in breast cancer. Biomaterials, 2019, 202, 1-11.	11.4	50
70	Enhanced immunostimulatory effects of DNA-encapsulated peptide hydrogels. Biomaterials, 2015, 53, 545-553.	11.4	49
71	Antibacterial Gel Coatings Inspired by the Cryptic Function of a Mussel Byssal Peptide. Advanced Materials, 2021, 33, e2103677.	21.0	46
72	De Novo Designed Peptidic Redox Potential Probe:Â Linking Sensitized Emission to Disulfide Bond Formation. Journal of the American Chemical Society, 2004, 126, 13616-13617.	13.7	45

#	Article	IF	CITATIONS
73	Alkyl Amine Bevirimat Derivatives Are Potent and Broadly Active HIV-1 Maturation Inhibitors. Antimicrobial Agents and Chemotherapy, 2016, 60, 190-197.	3.2	44
74	Design of a Peptide-Based Electronegative Hydrogel for the Direct Encapsulation, 3D Culturing, in Vivo Syringe-Based Delivery, and Long-Term Tissue Engraftment of Cells. ACS Applied Materials & Interfaces, 2019, 11, 34688-34697.	8.0	44
75	Iterative design of peptide-based hydrogels and the effect of network electrostatics on primary chondrocyte behavior. Biomaterials, 2012, 33, 7478-7488.	11.4	43
76	Influence of Hydrophobic Face Amino Acids on the Hydrogelation of β-Hairpin Peptide Amphiphiles. Macromolecules, 2015, 48, 1281-1288.	4.8	42
77	Rilpivirine and Doravirine Have Complementary Efficacies Against NNRTI-Resistant HIV-1 Mutants. Journal of Acquired Immune Deficiency Syndromes (1999), 2016, 72, 485-491.	2.1	42
78	Design and Application of Basic Amino Acids Displaying Enhanced Hydrophobicity. Journal of the American Chemical Society, 2003, 125, 7907-7913.	13.7	41
79	Effects of As(III) Binding on β-Hairpin Structure. Journal of the American Chemical Society, 2007, 129, 2981-2988.	13.7	41
80	Protein release from highly charged peptide hydrogel networks. Journal of Materials Chemistry B, 2016, 4, 1999-2007.	5.8	41
81	Surface-fill hydrogel attenuates the oncogenic signature of complex anatomical surface cancer in a single application. Nature Nanotechnology, 2021, 16, 1251-1259.	31.5	41
82	National Cancer Institute (NCI) Program for Natural Products Discovery: Rapid Isolation and Identification of Biologically Active Natural Products from the NCI Prefractionated Library. ACS Chemical Biology, 2020, 15, 1104-1114.	3.4	38
83	Reversible Stiffening Transition in \hat{l}^2 -Hairpin Hydrogels Induced by Ion Complexation. Journal of Physical Chemistry B, 2007, 111, 13901-13908.	2.6	37
84	Domain swapping in materials design. Biopolymers, 2010, 94, 141-155.	2.4	36
85	Synthesis and Primary Characterization of Self-Assembled Peptide-Based Hydrogels. Methods in Molecular Biology, 2008, 474, 61-77.	0.9	36
86	The Design of Efficient α-Helical C-Capping Auxiliaries. Journal of the American Chemical Society, 1998, 120, 2764-2767.	13.7	34
87	Mechanism of Membrane Permeation Induced by Synthetic β-Hairpin Peptides. Biophysical Journal, 2013, 105, 2093-2103.	0.5	34
88	Fluorous Phaseâ€Directed Peptide Assembly Affords Nanoâ€Peptisomes Capable of Ultrasoundâ€Triggered Cellular Delivery. Angewandte Chemie - International Edition, 2017, 56, 11404-11408.	13.8	34
89	De novo Design of Selective Membraneâ€Active Peptides by Enzymatic Control of Their Conformational Bias on the Cell Surface. Angewandte Chemie - International Edition, 2019, 58, 13706-13710.	13.8	33
90	A comparison of the ability of rilpivirine (TMC278) and selected analogues to inhibit clinically relevant HIV-1 reverse transcriptase mutants. Retrovirology, 2012, 9, 99.	2.0	29

#	Article	IF	CITATIONS
91	Cancer cell surface induced peptide folding allows intracellular translocation of drug. Journal of Controlled Release, 2015, 209, 317-326.	9.9	29
92	Fragmentation of Injectable Bioadhesive Hydrogels Affords Chemotherapeutic Macromolecules. Biomacromolecules, 2016, 17, 2634-2641.	5.4	27
93	New anti-IL-7Rα monoclonal antibodies show efficacy against T cell acute lymphoblastic leukemia in pre-clinical models. Leukemia, 2020, 34, 35-49.	7.2	26
94	Electrostatically Driven Guanidinium Interaction Domains that Control Hydrogel-Mediated Protein Delivery In Vivo. ACS Central Science, 2019, 5, 1750-1759.	11.3	25
95	Glycan Alteration Imparts Cellular Resistance to a Membrane-Lytic Anticancer Peptide. Cell Chemical Biology, 2017, 24, 149-158.	5.2	24
96	Intracellular Delivery of Gold Nanocolloids Promoted by a Chemically Conjugated Anticancer Peptide. ACS Omega, 2018, 3, 12754-12762.	3.5	22
97	Defining the Landscape of the Pauling-Corey Rippled Sheet: An Orphaned Motif Finding New Homes. Accounts of Chemical Research, 2021, 54, 2488-2501.	15.6	21
98	Design of self-assembling peptide hydrogelators amenable to bacterial expression. Biomaterials, 2015, 37, 62-72.	11.4	20
99	Enzymatic Control of the Conformational Landscape of Selfâ€Assembling Peptides. Angewandte Chemie, 2018, 130, 11358-11362.	2.0	19
100	Unnatural multidentate metal ligating α-amino acids. Tetrahedron Letters, 2006, 47, 6277-6280.	1.4	18
101	From structure to application: Progress and opportunities in peptide materials development. Current Opinion in Chemical Biology, 2021, 64, 131-144.	6.1	18
102	General method for facile intramolecular disulfide formation in synthetic peptides. Analytical Biochemistry, 2004, 335, 168-170.	2.4	17
103	Enhanced Stereoselectivity of a Cu(II) Complex Chiral Auxiliary in the Synthesis of Fmoc- <scp>l</scp> -γ-carboxyglutamic Acid. Journal of Organic Chemistry, 2011, 76, 1513-1520.	3.2	17
104	Triggered Formation of Anionic Hydrogels from Self-Assembling Acidic Peptide Amphiphiles. Macromolecules, 2017, 50, 5643-5651.	4.8	17
105	Design of a Multicompartment Hydrogel that Facilitates Timeâ€Resolved Delivery of Combination Therapy and Synergized Killing of Glioblastoma. Angewandte Chemie, 2018, 130, 15260-15264.	2.0	17
106	Serum Protein Adsorption Modulates the Toxicity of Highly Positively Charged Hydrogel Surfaces. ACS Applied Materials & Interfaces, 2021, 13, 8006-8014.	8.0	16
107	Peptide hydrogels for affinityâ€controlled release of therapeutic cargo: Current and potential strategies. Journal of Peptide Science, 2022, 28, e3377.	1.4	16
108	One-pot conversion of benzyl carbamates into fluorenylmethyl carbamates. Tetrahedron Letters, 2000, 41, 9953-9956.	1.4	15

#	Article	IF	CITATIONS
109	Structure-based design of a fluorimetric redox active peptide probe. Analytical Biochemistry, 2004, 325, 144-150.	2.4	15
110	Multiphase Assembly of Small Molecule Microcrystalline Peptide Hydrogel Allows Immunomodulatory Combination Therapy for Longâ€īerm Heart Transplant Survival. Small, 2020, 16, e2002791.	10.0	15
111	Dopamine Self-Polymerization as a Simple and Powerful Tool to Modulate the Viscoelastic Mechanical Properties of Peptide-Based Gels. Molecules, 2021, 26, 1363.	3.8	15
112	Uncoupling the Folding-Function Paradigm of Lytic Peptides to Deliver Impermeable Inhibitors of Intracellular Protein–Protein Interactions. Journal of the American Chemical Society, 2020, 142, 19950-19955.	13.7	14
113	Blocking downstream signaling pathways in the context of HDAC inhibition promotes apoptosis preferentially in cells harboring mutant Ras. Oncotarget, 2016, 7, 69804-69815.	1.8	14
114	Enhanced Uptake of Luminescent Quantum Dots by Live Cells Mediated by a Membrane-Active Peptide. ACS Omega, 2018, 3, 17164-17172.	3.5	12
115	Botryllamide G is an ABCG2 inhibitor that improves lapatinib delivery in mouse brain. Cancer Biology and Therapy, 2020, 21, 223-230.	3.4	10
116	Macromolecule-Network Electrostatics Controlling Delivery of the Biotherapeutic Cell Modulator TIMP-2. Biomacromolecules, 2018, 19, 1285-1293.	5.4	9
117	Utilizing Frémy's Salt to Increase the Mechanical Rigidity of Supramolecular Peptide-Based Gel Networks. Frontiers in Bioengineering and Biotechnology, 2020, 8, 594258.	4.1	9
118	An Intrinsically Disordered Peptide Facilitates Nonâ€Endosomal Cell Entry. Angewandte Chemie, 2016, 128, 3430-3433.	2.0	8
119	Structureâ€based nonâ€nucleoside inhibitor design: Developing inhibitors that are effective against resistant mutants. Chemical Biology and Drug Design, 2021, 97, 4-17.	3.2	8
120	INSTIs and NNRTIs Potently Inhibit HIV-1 Polypurine Tract Mutants in a Single Round Infection Assay. Viruses, 2021, 13, 2501.	3.3	8
121	A Convenient Synthesis of 6,6′-Diamino-2,2′-Bipyridine. Synthetic Communications, 1992, 22, 1033-1037.	2.1	7
122	Fluorous Phaseâ€Directed Peptide Assembly Affords Nanoâ€Peptisomes Capable of Ultrasoundâ€Triggered Cellular Delivery. Angewandte Chemie, 2017, 129, 11562-11566.	2.0	6
123	Dynamic protein folding at the surface of stimuliâ€responsive peptide fibrils. Protein Science, 2018, 27, 1243-1251.	7.6	6
124	De novo Design of Selective Membraneâ€Active Peptides by Enzymatic Control of Their Conformational Bias on the Cell Surface. Angewandte Chemie, 2019, 131, 13844-13848.	2.0	6
125	Microrheology of Responsive Hydrogel Networks. AIP Conference Proceedings, 2008, , .	0.4	4
126	The small molecule NSC676914A is cytotoxic and differentially affects NFκB signaling in ovarian cancer cell International, 2014, 14, 75.	4.1	4

#	Article	IF	CITATIONS
127	The effect of turn residues on the folding and cellâ€penetrating activity of βâ€hairpin peptides and applications toward protein delivery. Peptide Science, 2020, 112, e24125.	1.8	4
128	Hydrogels Constructed via β-Hairpin Peptide Self-Assembly. ACS Symposium Series, 2006, , 284-297.	0.5	2
129	Engineering and characterization of apHâ€sensitive homodimeric antiparallel coiled coil. Peptide Science, 2020, 112, e24180.	1.8	1
130	Inherently Antibacterial Hydrogels: Altering Activity via Tryptophan/Arginine Interactions. FASEB Journal, 2009, 23, 863.14.	0.5	1
131	Call for submissions. Biopolymers, 2015, 104, v-v.	2.4	0
132	Pulsed electronâ€electron double resonance, peptaibols and chlorotoxin in review. Biopolymers, 2016, 106, 5-5.	2.4	0
133	Peptide mediated intracellular delivery of semiconductor quantum dots. , 2017, , .		0
134	Using Electron Microscopy to Enhance the Knowledge of Biological Systems. Microscopy and Microanalysis, 2019, 25, 1164-1165.	0.4	0
135	Innentitelbild: De novo Design of Selective Membraneâ€Active Peptides by Enzymatic Control of Their Conformational Bias on the Cell Surface (Angew. Chem. 39/2019). Angewandte Chemie, 2019, 131, 13734-13734.	2.0	0
136	Conformational Uniqueness via Designed Ion Pairs. , 2001, , 438-439.		0
137	Metalâ€triggered hydrogelation of selfâ€assembling βâ€hairpin peptides for bioremediation. FASEB Journal, 2008, 22, 1010.1.	0.5	0
138	Bulk Material Properties of Beta–Bulge Peptide Hydrogels For Tissue Engineering. FASEB Journal, 2008, 22, 1005.1.	0.5	0
139	Inherently Antibacterial Hydrogels: Altering Activity via Tryptophan/Arginine Interactions. FASEB Journal, 2010, 24, 521.3.	0.5	Ο
140	Development of Inert, Injectable Sustained Release Formulation for Recombinant Human TIMPâ€⊋ in peptide hydrogels. FASEB Journal, 2018, 32, .	0.5	0