Antonio Carlos Cicogna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4503486/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exercise Training Attenuates Cirrhotic Cardiomyopathy. Journal of Cardiovascular Translational Research, 2021, 14, 674-684.	1.1	5
2	Myocardial Dysfunction in Cirrhotic Cardiomyopathy is Associated with Alterations of Phospholamban Phosphorylation and IL-6 Levels. Archives of Medical Research, 2021, 52, 284-293.	1.5	11
3	Isolated obesity resistance condition or associated with aerobic exercise training does not promote cardiac impairment. Brazilian Journal of Medical and Biological Research, 2021, 54, e10669.	0.7	1
4	Effects of obesity on the cardiac proteome. Endocrine and Metabolic Science, 2021, 2, 100076.	0.7	2
5	The effects of two types of Western diet on the induction of metabolic syndrome and cardiac remodeling in obese rats. Journal of Nutritional Biochemistry, 2021, 92, 108625.	1.9	7
6	Cardiac Remodeling in Obesity-Resistance Model is not Related to Collagen I and III Protein Expression. International Journal of Cardiovascular Sciences, 2021, , .	0.0	0
7	Preventive training does not interfere with mRNA-encoding myosin and collagen expression during pulmonary arterial hypertension. PLoS ONE, 2021, 16, e0244768.	1.1	2
8	Calcium homeostasis behavior and cardiac function on left ventricular remodeling by pressure overload. Brazilian Journal of Medical and Biological Research, 2021, 54, e10138.	0.7	3
9	Temporal Measures in Cardiac Structure and Function During the Development of Obesity Induced by Different Types of Western Diet in a Rat Model. Nutrients, 2020, 12, 68.	1.7	8
10	Increased angiotensin II from adipose tissue modulates myocardial collagen I and III in obese rats. Life Sciences, 2020, 252, 117650.	2.0	5
11	Cardioprotection Generated by Aerobic Exercise Training is Not Related to the Proliferation of Cardiomyocytes and Angiotensin-(1-7) Levels in the Hearts of Rats with Supravalvar Aortic Stenosis. Cellular Physiology and Biochemistry, 2020, 54, 719-735.	1.1	6
12	A Redução do ColÃ;geno Tipo I estÃ; Associada ao Aumento da Atividade da Metaloproteinase-2 e da Expressão Proteica de Leptina no MiocÃ;rdio de Ratos Obesos. Arquivos Brasileiros De Cardiologia, 2020, 115, 61-70.	0.3	2
13	Adjustments in β-Adrenergic Signaling Contribute to the Amelioration of Cardiac Dysfunction by Exercise Training in Supravalvular Aortic Stenosis. Cellular Physiology and Biochemistry, 2020, 54, 665-681.	1.1	6
14	Myocardial Dysfunction after Severe Food Restriction Is Linked to Changes in the Calcium-Handling Properties in Rats. Nutrients, 2019, 11, 1985.	1.7	6
15	Cardiac function and intracellular Ca2+ handling proteins are not impaired by high-saturated-fat diet-induced obesity. Brazilian Journal of Medical and Biological Research, 2019, 52, e8085.	0.7	7
16	Administration of Losartan Improves Myocardial Functional Performance in Rats with Highâ€Fat Dietâ€Induced Obesity. FASEB Journal, 2019, 33, 531.6.	0.2	0
17	Bark of Passiflora edulis Treatment Stimulates Antioxidant Capacity, and Reduces Dyslipidemia and Body Fat in db/db Mice. Antioxidants, 2018, 7, 120.	2.2	31
18	Heart remodeling produced by aortic stenosis promotes cardiomyocyte apoptosis mediated by collagen V imbalance. Pathophysiology, 2018, 25, 373-379.	1.0	11

ANTONIO CARLOS CICOGNA

#	Article	IF	CITATIONS
19	Pathological hypertrophy and cardiac dysfunction are linked to aberrant endogenous unsaturated fatty acid metabolism. PLoS ONE, 2018, 13, e0193553.	1.1	12
20	Effect of Gamma-Oryzanol as Therapeutic Agent to Prevent Cardiorenal Metabolic Syndrome in Animals Submitted to High Sugar-Fat Diet. Nutrients, 2017, 9, 1299.	1.7	48
21	The influence of obesity by a diet high in saturated fats and carbohydrates balance in the manifestation of systemic complications and comorbidities. Nutrire, 2017, 42, .	0.3	5
22	Cardiac, Metabolic and Molecular Profiles of Sedentary Rats in the Initial Moment of Obesity. Arquivos Brasileiros De Cardiologia, 2017, 109, 432-439.	0.3	3
23	Training improves the oxidative phenotype of muscle during the transition from cardiac hypertrophy to heart failure without altering MyoD and myogenin. Experimental Physiology, 2016, 101, 1075-1085.	0.9	4
24	Preventive aerobic training exerts a cardioprotective effect on rats treated with monocrotaline. International Journal of Experimental Pathology, 2016, 97, 238-247.	0.6	18
25	Myocardial contractility impairment with racemic bupivacaine, non-racemic bupivacaine and ropivacaine. A comparative study. Acta Cirurgica Brasileira, 2015, 30, 484-490.	0.3	0
26	Cardiac Dysfunction Induced by Obesity Is Not Related to β-Adrenergic System Impairment at the Receptor-Signalling Pathway. PLoS ONE, 2015, 10, e0138605.	1.1	27
27	Aerobic training attenuates nicotinic acethylcholine receptor changes in the diaphragm muscle during heart failure. Histology and Histopathology, 2015, 30, 801-11.	0.5	9
28	Obesity Preserves Myocardial Function During Blockade of the Glycolytic Pathway. Arquivos Brasileiros De Cardiologia, 2014, 103, 330-7.	0.3	14
29	Influence of Term of Exposure to High-Fat Diet-Induced Obesity on Myocardial Collagen Type I and III. Arquivos Brasileiros De Cardiologia, 2013, 102, 157-63.	0.3	17
30	Influence of longâ€ŧerm exposure of obesity on protein expression of myocardial calcium handling. FASEB Journal, 2013, 27, 1197.10.	0.2	0
31	ExercÃcio e restrição alimentar aumentam o RNAm de proteÃnas do trânsito de Ca2+ miocárdico em ratos. Arquivos Brasileiros De Cardiologia, 2011, 97, 46-52.	0.3	15
32	Involvement of Lâ€ŧype calcium channel and serca2a in myocardial dysfunction induced by obesity. Journal of Cellular Physiology, 2011, 226, 2934-2942.	2.0	40
33	TOTAL ANTIOXIDANT CAPACITY, LIPID PEROXIDATION, BIOCHEMICAL PARAMETERS AND BLOOD PRESSURE IN GENETICALLY OBESE RATS. FASEB Journal, 2011, 25, Ib292.	0.2	0
34	Cardiac remodeling in a rat model of diet-induced obesity. Canadian Journal of Cardiology, 2010, 26, 423-429.	0.8	80
35	Food restriction promotes downregulation of myocardial L-type Ca2+ channels. Canadian Journal of Physiology and Pharmacology, 2009, 87, 426-431.	0.7	7
36	Severe food restriction induces myocardial dysfunction related to SERCA2 activity. Canadian Journal of Physiology and Pharmacology, 2009, 87, 666-673.	0.7	6

#	Article	IF	CITATIONS
37	Food restriction impairs myocardial inotropic response to calcium and β-adrenergic stimulation in spontaneously hypertensive rats. Nutrition Research, 2008, 28, 722-727.	1.3	7
38	Exercise training increases myocardial inotropic response in food restricted rats. International Journal of Cardiology, 2006, 112, 191-201.	0.8	19
39	Myocardial Dysfunction Induced by Food Restriction is Related to Morphological Damage in Normotensive Middle-Aged Rats. Journal of Biomedical Science, 2005, 12, 641-649.	2.6	33
40	Myocardial dysfunction induced by food restriction is related to calcium cycling and beta-adrenergic system changes. Nutrition Research, 2003, 23, 911-919.	1.3	20
41	Mechanical, biochemical, and morphological changes in the heart from chronic food-restricted rats. Canadian Journal of Physiology and Pharmacology, 2001, 79, 754-760.	0.7	27
42	Myocardial Function during Chronic Food Restriction in Isolated Hypertrophied Cardiac Muscle. American Journal of the Medical Sciences, 2000, 320, 244-248.	0.4	11
43	Myocardial Function during Chronic Food Restriction in Isolated Hypertrophied Cardiac Muscle. American Journal of the Medical Sciences, 2000, 320, 244-248.	0.4	35