Wei-Shang Lo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4502851/publications.pdf

Version: 2024-02-01

567281 713466 1,046 22 15 21 citations h-index g-index papers 22 22 22 1600 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Hybrid quantum-classical simulations of magic angle spinning dynamic nuclear polarization in very large spin systems. Journal of Chemical Physics, 2022, 156, 124112.	3.0	10
2	Probing the Interface between Encapsulated Nanoparticles and Metal–Organic Frameworks for Catalytic Selectivity Control. Chemistry of Materials, 2021, 33, 1946-1953.	6.7	19
3	Creating an Aligned Interface between Nanoparticles and MOFs by Concurrent Replacement of Capping Agents. Journal of the American Chemical Society, 2021, 143, 5182-5190.	13.7	32
4	Tailoring Heterogeneous Catalysts at the Atomic Level: In Memoriam, Prof. Chia-Kuang (Frank) Tsung. ACS Applied Materials & Date: Accordance (1988) The Accordance (1988) Tsung.	8.0	0
5	Tuning Metal–Organic Framework Nanocrystal Shape through Facet-Dependent Coordination. Nano Letters, 2020, 20, 1774-1780.	9.1	52
6	Probing Interactions between Metal–Organic Frameworks and Freestanding Enzymes in a Hollow Structure. Nano Letters, 2020, 20, 6630-6635.	9.1	76
7	Stabilizing DNAzymes through Encapsulation in a Metal–Organic Framework. Chemistry - A European Journal, 2020, 26, 12931-12935.	3.3	9
8	Enhancing Four-Carbon Olefin Production from Acetylene over Copper Nanoparticles in Metal–Organic Frameworks. ACS Applied Materials & Enhancing Four State 11, 31496-31502.	8.0	13
9	Applying a Nanoparticle@MOF Interface To Activate an Unconventional Regioselectivity of an Inert Reaction at Ambient Conditions. Journal of the American Chemical Society, 2020, 142, 11521-11527.	13.7	26
10	Strainâ€Enhanced Metallic Intermixing in Shapeâ€Controlled Multilayered Core–Shell Nanostructures: Toward Shaped Intermetallics. Angewandte Chemie - International Edition, 2020, 59, 10574-10580.	13.8	22
11	Strainâ€Enhanced Metallic Intermixing in Shapeâ€Controlled Multilayered Core–Shell Nanostructures: Toward Shaped Intermetallics. Angewandte Chemie, 2020, 132, 10661-10667.	2.0	2
12	Investigating lattice strain impact on the alloyed surface of small Au@PdPt core–shell nanoparticles. Nanoscale, 2020, 12, 8687-8692.	5.6	16
13	A Metal–Organic Framework Thin Film for Selective Mg ²⁺ Transport. Angewandte Chemie - International Edition, 2019, 58, 15313-15317.	13.8	56
14	Rapid mechanochemical encapsulation of biocatalysts into robust metal–organic frameworks. Nature Communications, 2019, 10, 5002.	12.8	139
15	A Metal–Organic Framework Thin Film for Selective Mg ²⁺ Transport. Angewandte Chemie, 2019, 131, 15457-15461.	2.0	1
16	Structural Control of Uniform MOF-74 Microcrystals for the Study of Adsorption Kinetics. ACS Applied Materials & Samp; Interfaces, 2019, 11, 35820-35826.	8.0	36
17	Directional Engraving within Single Crystalline Metal–Organic Framework Particles via Oxidative Linker Cleaving. Journal of the American Chemical Society, 2019, 141, 20365-20370.	13.7	72
18	Long-Range Olefin Isomerization Catalyzed by Palladium(0) Nanoparticles. ACS Omega, 2017, 2, 698-711.	3.5	18

#	Article	IF	CITATION
19	Shielding against Unfolding by Embedding Enzymes in Metal–Organic Frameworks via a <i>de Novo</i> Approach. Journal of the American Chemical Society, 2017, 139, 6530-6533.	13.7	292
20	Green and rapid synthesis of zirconium metal–organic frameworks via mechanochemistry: UiO-66 analog nanocrystals obtained in one hundred seconds. Chemical Communications, 2017, 53, 5818-5821.	4.1	90
21	Cytotoxicity of Postmodified Zeolitic Imidazolate Frameworkâ€90 (ZIFâ€90) Nanocrystals: Correlation between Functionality and Toxicity. Chemistry - A European Journal, 2016, 22, 2925-2929.	3.3	50
22	A green and facile approach to obtain 100 nm zeolitic imidazolate framework-90 (ZIF-90) particles via leveraging viscosity effects. RSC Advances, 2014, 4, 52883-52886.	3.6	15