Nikolay G Lebedev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4502659/publications.pdf

Version: 2024-02-01

		758635	752256
105	576	12	20
papers	citations	h-index	g-index
105	105	105	239
103	103	103	237
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Quantum model for studying magneto-mechanical properties of a magnetically soft ferromagnet. Journal of Magnetism and Magnetic Materials, 2020, 494, 165658.	1.0	2
2	The effect of isomorphic impurities on the elastic conductivity of Dirac structures. Journal of Physics Condensed Matter, 2020, 32, 145301.	0.7	0
3	Differential Thermal EMF of Carbon Zigzag-Type Nanotubes in an External Electric Field. Physics of the Solid State, 2020, 62, 1928-1932.	0.2	O
4	Macromagnetic Calculation of the Magnetization of a Deformed Ferromagnet. Physics of Metals and Metallography, 2019, 120, 211-221.	0.3	0
5	Dependence of the Dipole Moment of Functionalized Carbon Nanotubes of Chair Type on Their Length. Russian Journal of Physical Chemistry B, 2018, 12, 165-171.	0.2	0
6	Quantum model of a hysteresis in a single-domain magnetically soft ferromagnetic. Journal of Magnetism and Magnetic Materials, 2018, 446, 135-142.	1.0	3
7	Quantum Model of Hysteresis in a Single-Domain Magnetically Soft Ferromagnet. Physics of Metals and Metallography, 2018, 119, 452-461.	0.3	0
8	Piezoconductivity of θ_i hiral θ_i arbon Nanotubes in the Framework of the Tight-Binding Method. Mathematical Physics and Computer Simulation, 2018, , 53-63.	0.2	2
9	Transport properties of bilayer graphene nanoribbons with hydrogen adatoms. Russian Journal of Physical Chemistry B, 2016, 10, 844-850.	0.2	1
10	Influence of the surface curvature of carbon nanotubes on their conductivity in the dirac approximation. Physics of the Solid State, 2016, 58, 1207-1212.	0.2	2
11	Chiral effect of the dissociative adsorption of molecular oxygen on the carbon nanotube surface. Russian Journal of Physical Chemistry A, 2015, 89, 823-827.	0.1	2
12	Strain-induced changes in the band gap of doped carbon nanotubes. Russian Journal of Physical Chemistry B, 2014, 8, 745-751.	0.2	3
13	Effect of atomic hydrogen adsorption on the transport characteristics of semiconducting carbon nanotubes. Russian Journal of Physical Chemistry B, 2014, 8, 590-595.	0.2	0
14	Tunneling current of the contact between impurity-containing graphene nanoribbons. Semiconductors, 2013, 47, 662-664.	0.2	1
15	Adsorption model of atomic hydrogen on the surfaces of carbon nanotubes. Russian Journal of Physical Chemistry A, 2013, 87, 979-984.	0.1	4
16	On the possibility of current amplification by random inhomogeneities in graphene. Russian Physics Journal, 2013, 55, 1111-1116.	0.2	0
17	Extremely short optical pulses in strained graphene in terms of the gauge theory. Physics of the Solid State, 2013, 55, 2602-2607.	0.2	2
18	Effect of an electric field on the transport and diffusion properties of bilayer graphene ribbons. Physica Scripta, 2013, 87, 015602.	1.2	6

#	Article	IF	CITATIONS
19	Solitons in a System of Coupled Bilayer Graphene Waveguides. Fullerenes Nanotubes and Carbon Nanostructures, 2012, 20, 574-578.	1.0	O
20	Tunneling current of the contact impurity graphene nanoribbon – quantum dots. Russian Physics Journal, 2012, 55, 644-648.	0.2	0
21	Solitons in a system of coupled graphene waveguides. Physics of the Solid State, 2012, 54, 174-177.	0.2	12
22	Absolute negative conductivity in zig-zag carbon nanotubes in the presence of a magnetic field. Russian Physics Journal, 2012, 54, 1185-1190.	0.2	0
23	Echoes of relativistic Landau levels in graphene and bilayer graphene. Bulletin of the Russian Academy of Sciences: Physics, 2012, 76, 264-266.	0.1	0
24	The effect of spin-orbit interaction on the dynamics of ultimately short pulses in graphene systems. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2012, 112, 453-456.	0.2	2
25	Piezoresistive effect in single-walled carbon nanotubes. Physics of the Solid State, 2012, 54, 1501-1506.	0.2	6
26	Electrical conductivity and diffusion coefficient of electrons in a graphene bilayer. Technical Physics, 2012, 57, 1025-1029.	0.2	6
27	A model of the multiple adsorption of hydrogen atoms on the surface of carbon nanotubes. Russian Journal of Physical Chemistry B, 2012, 6, 321-326.	0.2	3
28	The chiral effect of adsorption of univalent atoms and diatomic molecules on the surface of carbon nanotubes. Russian Journal of Physical Chemistry B, 2012, 6, 448-454.	0.2	3
29	EXTREMELY SHORT OPTICAL PULSES IN CARBON NANOTUBES IN DISPERSIVE NONMAGNETIC DIELECTRIC MEDIA. International Journal of Modern Physics B, 2011, 25, 3401-3408.	1.0	11
30	Negative differential conductivity in bilayer graphene controlled by an external voltage and in the presence of a magnetic field. Physica Scripta, 2011, 83, 015603.	1.2	3
31	Dynamics of laser bullet propagation in carbon nanotube array with metal inhomogeneities. Technical Physics Letters, 2011, 37, 119-122.	0.2	12
32	Study of the indirect interaction in the quantum dots of the graphene bilayer in the framework of the s-d model. Technical Physics Letters, 2011, 37, 724-727.	0.2	2
33	Domain structure of graphene with Hubbard interaction under conditions of emergence of a spontaneous transverse field. Russian Journal of Physical Chemistry B, 2011, 5, 215-219.	0.2	0
34	Magnetic field effect on ultra short pulse propagation in system of carbon nanotubes. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2011, 110, 557-561.	0.2	5
35	Ultimately short optical pulses in carbon nanotubes in dispersive nonmagnetic dielectric media. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2011, 111, 85-90.	0.2	11
36	Absolute negative conductivity of graphene with impurities in magnetic field. Semiconductors, 2011, 45, 628-632.	0.2	1

#	Article	IF	CITATIONS
37	Dissipative solitons in carbon nanotubes. Physics of the Solid State, 2011, 53, 209-214.	0.2	2
38	Specific features of indirect interaction in an impurity graphene bilayer in the framework of the s-d model. Physics of the Solid State, 2011, 53, 1689-1693.	0.2	2
39	Negative differential conductivity of bigraphene controlled by an external voltage in a magnetic field. Physics of the Solid State, 2011, 53, 1694-1698.	0.2	1
40	Coefficients of diffusion and conductivity of semiconductor carbon nanotubes in an external electric field. Physics of the Solid State, 2011, 53, 1943-1946.	0.2	5
41	Ferroelectric phase transition in graphene with the Hubbard interaction. Physics of the Solid State, 2011, 53, 2520-2524.	0.2	0
42	Spontaneous transverse field in impurity graphene. Technical Physics, 2011, 56, 1123-1128.	0.2	0
43	Dissipative solitons in carbon nanotubes. Bulletin of the Russian Academy of Sciences: Physics, 2011, 75, 168-171.	0.1	0
44	Curved graphene nanoribbons and tunneling current. Bulletin of the Russian Academy of Sciences: Physics, 2011, 75, 1576-1578.	0.1	1
45	Discrete solitons in the bigraphene with adsorbed atomic hydrogen. Bulletin of the Russian Academy of Sciences: Physics, 2011, 75, 1655-1657.	0.1	1
46	Interaction of few-cycle optical pulses in nonmetallic carbon nanotubes. Physics of Wave Phenomena, 2011, 19, 39-42.	0.3	4
47	Localization of electron density waves in a system of carbon nanotubes and fullerenes. Physics of Wave Phenomena, 2011, 19, 43-46.	0.3	0
48	Light bullet passing an array of carbon nanotubes with metallic mesh irregularities. European Physical Journal D, 2011, 65, 635-640.	0.6	11
49	Asymptotic dynamics of extremely short pulses in a system of carbon nanotubes. Russian Physics Journal, 2011, 53, 1118-1124.	0.2	2
50	Collision of extremely short optical pulses in semiconductor carbon nanotubes. Russian Physics Journal, 2011, 54, 77-85.	0.2	0
51	Extremely short optical pulse in a system of nanotubes with adsorbed hydrogen. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 946-952.	0.9	16
52	Electronic spectrum and tunneling current in curved graphene nanoribbons. Solid State Communications, 2011, 151, 1147-1150.	0.9	6
53	Ultrashort optical pulses in carbon nanotubes and graphene with periodic impurities. Physics of the Solid State, 2010, 52, 1780-1786.	0.2	6
54	Absolute negative conductivity in graphene with the Hubbard interaction in a magnetic field. Physics of the Solid State, 2010, 52, 1952-1956.	0.2	4

#	Article	IF	Citations
55	Two-dimensional unitary waves in a nonuniform block of carbon nanotubes. Bulletin of the Russian Academy of Sciences: Physics, 2010, 74, 1642-1644.	0.1	O
56	Semiempirical studies of the electronic structure of aluminophosphide and Haeckelite boronitride nanotubes. Russian Journal of Physical Chemistry B, 2010, 4, 143-150.	0.2	0
57	Electromagnetic solitons in carbon nanotubes at low temperatures. Russian Journal of Physical Chemistry B, 2010, 4, 151-155.	0.2	2
58	Amplification of electromagnetic pulses in graphene with Hubbard interaction by a uniform high-frequency alternating field. Russian Journal of Physical Chemistry B, 2010, 4, 709-714.	0.2	0
59	The stabilization of magnetic solitons in carbon nanotubes by a constant electric field at low temperatures. Russian Journal of Physical Chemistry B, 2010, 4, 860-863.	0.2	O
60	Alternating field-induced phase transition in zigzag carbon nanotubes. Journal of Russian Laser Research, 2010, 31, 415-420.	0.3	0
61	Two-dimensional light bullets in an array of carbon nanotubes. JETP Letters, 2010, 91, 461-465.	0.4	36
62	Amplification of ultimately-short pulses in graphene in the presence of a high-frequency field. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2010, 108, 618-623.	0.2	19
63	Tunneling through the carbon nanotube/graphene interface exposed to a strong oscillating electric field. Journal of Nanophotonics, 2010, 4, 041670.	0.4	6
64	Absolute negative conductivity of graphene in the Hubbard model. Physica Scripta, 2010, 82, 025704.	1.2	1
65	10.1007/s11451-008-2027-7. , 2010, 50, 383.		1
66	Electromagnetic solitons in a system of graphene planes with Anderson impurities. Journal of Russian Laser Research, 2009, 30, 101-108.	0.3	12
67	Ultrashort optical pulses controlling electric fields in carbon nanotubes at low temperatures. Bulletin of the Russian Academy of Sciences: Physics, 2009, 73, 1598-1600.	0.1	1
68	Doped carbon nanotubes as quantum memory devices. Bulletin of the Russian Academy of Sciences: Physics, 2009, 73, 1675-1677.	0.1	1
69	Polarized electromagnetic solitons in carbon nanotubes. Bulletin of the Russian Academy of Sciences: Physics, 2009, 73, 1678-1680.	0.1	O
70	An electromechanical nanothermometer based on thermal vibrations of carbon nanotube walls. Physics of the Solid State, 2009, 51, 1306-1314.	0.2	6
71	Two-dimensional nonlinear electromagnetic waves in a carbon nanotube array. Physics of the Solid State, 2009, 51, 1758-1764.	0.2	16
72	Electrical conduction of carbon nanotubes due to the migration of protons over their surface. Physics of the Solid State, 2009, 51, 2421-2427.	0.2	6

#	Article	IF	CITATIONS
73	Two-qubit cells made of boron nitride nanotubes for a quantum computer. Technical Physics, 2009, 54, 338-342.	0.2	5
74	Design of soliton electron lattices in carbon nanotubes by a magnetic field. Russian Physics Journal, 2008, 51, 1262-1269.	0.2	0
75	Dynamics and damping of electromagnetic solitons in the carbon nanotube bundles. Russian Journal of Physical Chemistry B, 2008, 2, 745-752.	0.2	3
76	Soliton antiferromagnetic lattice in carbon nanotubes. Russian Journal of Physical Chemistry B, 2008, 2, 964-968.	0.2	6
77	Electromagnetic solitons in bundles of zigzag carbon nanotubes. Physics of the Solid State, 2008, 50, 383-389.	0.2	32
78	Periodic current domains in bundles of carbon nanotubes. Technical Physics, 2008, 53, 817-823.	0.2	10
79	Interaction of ultrashort light pulses with carbon nanotubes. Bulletin of the Russian Academy of Sciences: Physics, 2008, 72, 673-676.	0.1	0
80	Control of soliton lattices of Hubbard electrons in carbon nanotubes by a magnetic field. Bulletin of the Russian Academy of Sciences: Physics, 2008, 72, 1614-1616.	0.1	0
81	Electromechanical Nanothermometer Based on Carbon Nanotubes. Fullerenes Nanotubes and Carbon Nanostructures, 2008, 16, 352-356.	1.0	2
82	<title>Light scattering on solitons in carbon nanotubes</title> . Proceedings of SPIE, 2008, ,	0.8	1
83	Electromechanical nanothermometer. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 366, 480-486.	0.9	23
84	Electrical conductivity of double-walled carbon nanotubes in the framework of the Hubbard model. Physics of the Solid State, 2007, 49, 189-196.	0.2	22
85	Nonlinear electron density waves and nonlinear acoustic waves in carbon nanotubes. Bulletin of the Russian Academy of Sciences: Physics, 2007, 71, 134-138.	0.1	0
86	SOLITON LATTICES IN CARBON NANOTUBES. , 2007, , 471-480.		0
87	Geometric structure and electronic properties of planar and nanotubular BN structures of the Haeckelite type. Physics of the Solid State, 2006, 48, 192-198.	0.2	6
88	Proton conductivity of single-walled carbon nanotubes: A semiempirical study. Physics of the Solid State, 2006, 48, 806-811.	0.2	7
89	Quantum-chemical calculations of the piezoelectric characteristics of boron nitride and carbon nanotubes. Physics of the Solid State, 2006, 48, 2028-2034.	0.2	8
90	Phonon spectrum of double-wall carbon nanotubes. Physics of the Solid State, 2006, 48, 2354-2358.	0.2	2

#	Article	IF	CITATIONS
91	Electromagnetic solitons in a system of carbon nanotubes. Journal of Russian Laser Research, 2006, 27, 457-465.	0.3	75
92	New class of non-carbon AIP nanotubes: Structure and electronic properties. JETP Letters, 2005, 81, 185-189.	0.4	18
93	Nonchiral BN Haeckelite nanotubes. JETP Letters, 2005, 81, 346-350.	0.4	5
94	Nonlinear Waves in Carbon Nanotubes under Conditions of Electron-Phonon Bonding. Russian Physics Journal, 2005, 48, 639-645.	0.2	1
95	Electronic structure of laser dye DCM and its derivatives. International Journal of Quantum Chemistry, 2005, 104, 189-196.	1.0	8
96	Hiral Effects of Single Wall Carbon Nanotube Fluorination and Hydrogenation. Fullerenes Nanotubes and Carbon Nanostructures, 2005, 12, 443-448.	1.0	6
97	Electronic structure of carbon nanotubes modified by alkali metal atoms. Physics of the Solid State, 2004, 46, 1173-1178.	0.2	8
98	Single and regular hydrogenation and oxidation of carbon nanotubes: MNDO calculations. International Journal of Quantum Chemistry, 2004, 96, 149-154.	1.0	9
99	Fluorination of carbon nanotubes: Quantum chemical investigation within MNDO approximation. International Journal of Quantum Chemistry, 2004, 96, 142-148.	1.0	8
100	Orbital-stoichiometric cluster model of carbon nanotube generation on quantum dots of diamond surface. International Journal of Quantum Chemistry, 2004, 96, 155-166.	1.0	1
101	Hiral effects of single-wall carbon nanotube fluorination and hydrogenation. International Journal of Quantum Chemistry, 2004, 100, 548-558.	1.0	13
102	Fluorination of carbon nanotubes within the molecular cluster method. Microelectronic Engineering, 2003, 69, 511-518.	1.1	15
103	A study of the oxidation and fluorination of single-walled carbon nanotubes by the MNDO method. Physics of the Solid State, 2002, 44, 482-484.	0.2	9
104	Quantum chemical calculations for polyvinylidene fluoride with substitution defects. Journal of Structural Chemistry, 2000, 41, 378-382.	0.3	0
105	Effect of Atomic Hydrogen Concentration in the Study of Adsorption on Graphene. Key Engineering Materials, 0, 465, 211-214.	0.4	O