
## Jonathan Lifshitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4501563/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Intimate Partner Violence, Clinical Indications, and Other Family Risk Factors Associated With<br>Pediatric Abusive Head Trauma. Journal of Interpersonal Violence, 2022, 37, NP6785-NP6812.                    | 2.0 | 8         |
| 2  | Nanoliposomes Reduce Stroke Injury Following Middle Cerebral Artery Occlusion in Mice. Stroke, 2022, 53, STROKEAHA121037120.                                                                                    | 2.0 | 6         |
| 3  | The pentagram of concussion: an observational analysis that describes five overt indicators of head trauma. BMC Sports Science, Medicine and Rehabilitation, 2022, 14, 39.                                      | 1.7 | 3         |
| 4  | Chronic Cognitive and Cerebrovascular Function after Mild Traumatic Brain Injury in Rats. Journal of<br>Neurotrauma, 2022, 39, 1429-1441.                                                                       | 3.4 | 7         |
| 5  | Time Course of Remote Neuropathology Following Diffuse Traumatic Brain Injury in the Male Rat.<br>Experimental Neurobiology, 2022, 31, 105-115.                                                                 | 1.6 | 3         |
| 6  | Evaluating abusive head trauma in children < 5†years old: Risk factors and the importance of the social history. Journal of Pediatric Surgery, 2021, 56, 390-396.                                               | 1.6 | 11        |
| 7  | Pre-Clinical Common Data Elements for Traumatic Brain Injury Research: Progress and Use Cases.<br>Journal of Neurotrauma, 2021, 38, 1399-1410.                                                                  | 3.4 | 22        |
| 8  | Experimental diffuse brain injury and a model of Alzheimer's disease exhibit diseaseâ€specific changes in sleep and incongruous peripheral inflammation. Journal of Neuroscience Research, 2021, 99, 1136-1160. | 2.9 | 12        |
| 9  | Spatial Distribution of Neuropathology and Neuroinflammation Elucidate the Biomechanics of Fluid<br>Percussion Injury. Neurotrauma Reports, 2021, 2, 59-75.                                                     | 1.4 | 4         |
| 10 | An update on the rod microglia variant in experimental and clinical brain injury and disease. Brain<br>Communications, 2021, 3, fcaa227.                                                                        | 3.3 | 33        |
| 11 | Pathophysiology of Traumatic Brain Injury. , 2021, , 13-18.                                                                                                                                                     |     | 1         |
| 12 | Mice Born to Mothers with Gravida Traumatic Brain Injury Have Distorted Brain Circuitry and Altered<br>Immune Responses. Journal of Neurotrauma, 2021, 38, 2862-2880.                                           | 3.4 | 6         |
| 13 | Population-Level Epidemiology of Concussion Concurrent with Domestic Violence in Arizona, USA.<br>Journal of Neurotrauma, 2021, 38, 2301-2310.                                                                  | 3.4 | 8         |
| 14 | Age-at-Injury Determines the Extent of Long-Term Neuropathology and Microgliosis After a Diffuse<br>Brain Injury in Male Rats. Frontiers in Neurology, 2021, 12, 722526.                                        | 2.4 | 15        |
| 15 | Failure to Thrive in a 15-month-old with a History of Head Trauma. Pediatrics in Review, 2021, 42, S55-S59.                                                                                                     | 0.4 | 1         |
| 16 | Remote Ischemic Conditioning Reduced Acute Lung Injury After Traumatic Brain Injury in the Mouse.<br>Shock, 2021, 55, 256-267.                                                                                  | 2.1 | 10        |
| 17 | Acute peripheral inflammation and postâ€ŧraumatic sleep differ between sexes after experimental diffuse<br>brain injury. European Journal of Neuroscience, 2020, 52, 2791-2814.                                 | 2.6 | 30        |
| 18 | Traumatic Brain Injury-Induced Sex-Dependent Changes in Late-Onset Sensory Hypersensitivity and<br>Glutamate Neurotransmission. Frontiers in Neurology, 2020, 11, 749.                                          | 2.4 | 24        |

| #  | Article                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Extracellular matrix proteins are timeâ€dependent and regionalâ€specific markers in experimental diffuse<br>brain injury. Brain and Behavior, 2020, 10, e01767.                                     | 2.2  | 17        |
| 20 | Proteomic analysis identifies plasma correlates of remote ischemic conditioning in the context of experimental traumatic brain injury. Scientific Reports, 2020, 10, 12989.                         | 3.3  | 2         |
| 21 | Sex-Dependent Macromolecule and Nanoparticle Delivery in Experimental Brain Injury. Tissue<br>Engineering - Part A, 2020, 26, 688-701.                                                              | 3.1  | 30        |
| 22 | Beyond Binary: Influence of Sex and Gender on Outcome after Traumatic Brain Injury. Journal of Neurotrauma, 2020, 37, 2454-2459.                                                                    | 3.4  | 24        |
| 23 | Longitudinal optical imaging technique to visualize progressive axonal damage after brain injury in mice reveals responses to different minocycline treatments. Scientific Reports, 2020, 10, 7815. | 3.3  | 13        |
| 24 | Intracerebral hemorrhage in the mouse altered sleep-wake patterns and activated microglia.<br>Experimental Neurology, 2020, 327, 113242.                                                            | 4.1  | 8         |
| 25 | Forensic Nursing Examination to Screen for Traumatic Brain Injury following Intimate Partner<br>Violence. Journal of Aggression, Maltreatment and Trauma, 2019, 28, 732-743.                        | 1.4  | 12        |
| 26 | Traumatic Brain Injury in Victims of Domestic Violence. Journal of Aggression, Maltreatment and<br>Trauma, 2019, 28, 655-659.                                                                       | 1.4  | 15        |
| 27 | Involving Police Departments in Early Awareness of Concussion Symptoms during Domestic Violence<br>Calls. Journal of Aggression, Maltreatment and Trauma, 2019, 28, 826-837.                        | 1.4  | 3         |
| 28 | Restoring More than Smiles in Broken Homes: Dental and Oral Biomarkers of Brain Injury in Domestic<br>Violence. Journal of Aggression, Maltreatment and Trauma, 2019, 28, 838-847.                  | 1.4  | 9         |
| 29 | Primum non nocere: a call for balance when reporting on CTE. Lancet Neurology, The, 2019, 18, 231-233.                                                                                              | 10.2 | 48        |
| 30 | Acute Post-Traumatic Sleep May Define Vulnerability to a Second Traumatic Brain Injury in Mice.<br>Journal of Neurotrauma, 2019, 36, 1318-1334.                                                     | 3.4  | 29        |
| 31 | Epidemiology of Pediatric Traumatic Brain Injury and Hypothalamic-Pituitary Disorders in Arizona.<br>Frontiers in Neurology, 2019, 10, 1410.                                                        | 2.4  | 21        |
| 32 | Experimental Traumatic Brain Injury Induces Chronic Glutamatergic Dysfunction in Amygdala<br>Circuitry Known to Regulate Anxiety-Like Behavior. Frontiers in Neuroscience, 2019, 13, 1434.          | 2.8  | 39        |
| 33 | Fluid Percussion Injury Model. Springer Series in Translational Stroke Research, 2019, , 333-347.                                                                                                   | 0.1  | 0         |
| 34 | Midline (central) fluid percussion model of traumatic brain injury in pediatric and adolescent rats.<br>Journal of Neurosurgery: Pediatrics, 2018, 22, 22-30.                                       | 1.3  | 19        |
| 35 | Partial cage division significantly reduces aggressive behavior in male laboratory mice. Laboratory<br>Animals, 2018, 52, 384-393.                                                                  | 1.0  | 16        |
| 36 | Does time heal all wounds? Experimental diffuse traumatic brain injury results in persisting histopathology in the thalamus. Behavioural Brain Research, 2018, 340, 137-146.                        | 2.2  | 55        |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Influence of Schizophrenia-Associated Gene <i>Egr3</i> on Sleep Behavior and Circadian Rhythms in<br>Mice. Journal of Biological Rhythms, 2018, 33, 662-670.                                                              | 2.6 | 11        |
| 38 | Traumatic brain injuryâ€induced neuronal damage in the somatosensory cortex causes formation of<br>rodâ€shaped microglia that promote astrogliosis and persistent neuroinflammation. Glia, 2018, 66,<br>2719-2736.        | 4.9 | 105       |
| 39 | Simultaneous Cryosectioning of Multiple Rodent Brains. Journal of Visualized Experiments, 2018, , .                                                                                                                       | 0.3 | 7         |
| 40 | Novel TNF receptor-1 inhibitors identified as potential therapeutic candidates for traumatic brain injury. Journal of Neuroinflammation, 2018, 15, 154.                                                                   | 7.2 | 34        |
| 41 | Blood–brainbarrier disruption dictates nanoparticle accumulation following experimental brain<br>injury. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2155-2166.                                        | 3.3 | 29        |
| 42 | Fluid Percussion Model of Traumatic Brain Injury. Neuromethods, 2018, , 97-110.                                                                                                                                           | 0.3 | 0         |
| 43 | Aging with a traumatic brain injury: Could behavioral morbidities and endocrine symptoms be influenced by microglial priming?. Brain, Behavior, and Immunity, 2017, 59, 1-7.                                              | 4.1 | 47        |
| 44 | Pioglitazone Attenuates Neuroinflammation and Promotes Dopaminergic Neuronal Survival in the<br>Nigrostriatal System of Rats after Diffuse Brain Injury. Journal of Neurotrauma, 2017, 34, 414-422.                       | 3.4 | 61        |
| 45 | 3EMF Rod Microglia in Traumatic Brain Injury. Annals of Emergency Medicine, 2017, 70, S170-S171.                                                                                                                          | 0.6 | Ο         |
| 46 | Nogo presence is inversely associated with shifts in cortical microglial morphology following experimental diffuse brain injury. Neuroscience, 2017, 359, 209-223.                                                        | 2.3 | 28        |
| 47 | Synaptogenic Molecules Thrombospondin-1 and Brain Derived Neurotrophic Factor Rise in the<br>Amygdala after Experimental Diffuse Traumatic Brain Injury. Journal of the American College of<br>Surgeons, 2017, 225, e187. | 0.5 | 0         |
| 48 | Quantitative microglia analyses reveal diverse morphologic responses in the rat cortex after diffuse brain injury. Scientific Reports, 2017, 7, 13211.                                                                    | 3.3 | 199       |
| 49 | Early and Persistent Dendritic Hypertrophy in the Basolateral Amygdala following Experimental<br>Diffuse Traumatic Brain Injury. Journal of Neurotrauma, 2017, 34, 213-219.                                               | 3.4 | 51        |
| 50 | Selective Reduction of Brain Docosahexaenoic Acid after Experimental Brain Injury and Mitigation of<br>Neuroinflammatory Outcomes with Dietary DHA. Current Research Concussion, 2017, 04, e38-e54.                       | 0.3 | 5         |
| 51 | Rehabilitation modality and onset differentially influence whisker sensory hypersensitivity after diffuse traumatic brain injury in the rat. Restorative Neurology and Neuroscience, 2017, 35, 611-629.                   | 0.7 | 9         |
| 52 | Traumatic brain injury and vestibulo-ocular function: current challenges and future prospects. Eye and Brain, 2016, Volume 8, 153-164.                                                                                    | 2.5 | 58        |
| 53 | MW151 Inhibited IL-1 $\hat{1}^2$ Levels after Traumatic Brain Injury with No Effect on Microglia Physiological Responses. PLoS ONE, 2016, 11, e0149451.                                                                   | 2.5 | 17        |
| 54 | Diffuse traumatic brain injury affects chronic corticosterone function in the rat. Endocrine Connections, 2016, 5, 152-166.                                                                                               | 1.9 | 61        |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Diffuse traumatic brain injury induces prolonged immune dysregulation and potentiates hyperalgesia following a peripheral immune challenge. Molecular Pain, 2016, 12, 174480691664705.                               | 2.1 | 34        |
| 56 | Aging with Traumatic Brain Injury: Effects of Age at Injury on Behavioral Outcome following Diffuse<br>Brain Injury in Rats. Developmental Neuroscience, 2016, 38, 195-205.                                          | 2.0 | 48        |
| 57 | Midline (Central) Fluid Percussion Model of Traumatic Brain Injury. Methods in Molecular Biology, 2016, 1462, 211-230.                                                                                               | 0.9 | 34        |
| 58 | Impact Acceleration Model of Diffuse Traumatic Brain Injury. Methods in Molecular Biology, 2016,<br>1462, 253-266.                                                                                                   | 0.9 | 19        |
| 59 | Clinical relevance of midline fluid percussion brain injury: Acute deficits, chronic morbidities and the utility of biomarkers. Brain Injury, 2016, 30, 1293-1301.                                                   | 1.2 | 63        |
| 60 | Temporal assessment of nanoparticle accumulation after experimental brain injury: Effect of particle size. Scientific Reports, 2016, 6, 29988.                                                                       | 3.3 | 70        |
| 61 | Cognitive deficits develop 1 month after diffuse brain injury and are exaggerated by<br>microglia-associated reactivity to peripheral immune challenge. Brain, Behavior, and Immunity, 2016,<br>54, 95-109.          | 4.1 | 113       |
| 62 | Experimental diffuse brain injury results in regional alteration of gross vascular morphology<br>independent of neuropathology. Brain Injury, 2016, 30, 217-224.                                                     | 1.2 | 8         |
| 63 | Lipid mediators of inflammation in neurological injury: shifting the balance toward resolution.<br>Neural Regeneration Research, 2016, 11, 77.                                                                       | 3.0 | 11        |
| 64 | Primer for Immunohistochemistry on Cryosectioned Rat Brain Tissue: Example Staining for Microglia and Neurons. Journal of Visualized Experiments, 2015, , e52293.                                                    | 0.3 | 15        |
| 65 | 509. Critical Care Medicine, 2015, 43, 129.                                                                                                                                                                          | 0.9 | 0         |
| 66 | Resolvins AT-D1 and E1 differentially impact functional outcome, post-traumatic sleep, and microglial activation following diffuse brain injury in the mouse. Brain, Behavior, and Immunity, 2015, 47, 131-140.      | 4.1 | 110       |
| 67 | The time course of activity-regulated cytoskeletal (ARC) gene and protein expression in the<br>whisker-barrel circuit using two paradigms of whisker stimulation. Behavioural Brain Research, 2015,<br>284, 249-256. | 2.2 | 11        |
| 68 | Methylene Blue Attenuates Traumatic Brain Injury-Associated Neuroinflammation and Acute<br>Depressive-Like Behavior in Mice. Journal of Neurotrauma, 2015, 32, 127-138.                                              | 3.4 | 93        |
| 69 | Microglia: dismantling and rebuilding circuits after acute neurological injury. Metabolic Brain Disease, 2015, 30, 393-400.                                                                                          | 2.9 | 52        |
| 70 | Rod Microglia: A Morphological Definition. PLoS ONE, 2014, 9, e97096.                                                                                                                                                | 2.5 | 121       |
| 71 | Platelet-mediated changes to neuronal glutamate receptor expression at sites of microthrombosis following experimental subarachnoid hemorrhage. Journal of Neurosurgery, 2014, 121, 1424-1431.                       | 1.6 | 27        |
| 72 | Diffuse brain injury does not affect chronic sleep patterns in the mouse. Brain Injury, 2014, 28, 504-510.                                                                                                           | 1.2 | 38        |

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Neuropathology in sensory, but not motor, brainstem nuclei of the rat whisker circuit after diffuse brain injury. Somatosensory & Motor Research, 2014, 31, 127-135.                                                              | 0.9 | 23        |
| 74 | Commentary on Kamper et. al., juvenile traumatic brain injury evolves into a chronic brain disorder:<br>The challenges in longitudinal studies of juvenile traumatic brain injury. Experimental Neurology,<br>2014, 261, 434-439. | 4.1 | 2         |
| 75 | Acute over-the-counter pharmacological intervention does not adversely affect behavioral outcome following diffuse traumatic brain injury in the mouse. Experimental Brain Research, 2014, 232, 2709-2719.                        | 1.5 | 34        |
| 76 | Traumatic brain injury alters long-term hippocampal neuron morphology in juvenile, but not<br>immature, rats. Child's Nervous System, 2014, 30, 1333-1342.                                                                        | 1.1 | 23        |
| 77 | Immune Activation Promotes Depression 1 Month After Diffuse Brain Injury: A Role for Primed<br>Microglia. Biological Psychiatry, 2014, 76, 575-584.                                                                               | 1.3 | 209       |
| 78 | Recovery of Neurological Function Despite Immediate Sleep Disruption Following Diffuse Brain Injury in the Mouse: Clinical Relevance to Medically Untreated Concussion. Sleep, 2014, 37, 743-752.                                 | 1.1 | 56        |
| 79 | Diffuse Brain Injury Induces Acute Post-Traumatic Sleep. PLoS ONE, 2014, 9, e82507.                                                                                                                                               | 2.5 | 64        |
| 80 | The p38α MAPK Regulates Microglial Responsiveness to Diffuse Traumatic Brain Injury. Journal of Neuroscience, 2013, 33, 6143-6153.                                                                                                | 3.6 | 112       |
| 81 | Using anesthetics and analgesics in experimental traumatic brain injury. Lab Animal, 2013, 42, 286-291.                                                                                                                           | 0.4 | 58        |
| 82 | Objective Morphological Quantification of Microscopic Images Using a Fast Fourier Transform (FFT)<br>Analysis. Current Protocols in Essential Laboratory Techniques, 2013, 7, 9.5.1-9.5.12.                                       | 2.6 | 16        |
| 83 | Disruptions in the Regulation of Extracellular Glutamate by Neurons and Glia in the Rat Striatum Two<br>Days after Diffuse Brain Injury. Journal of Neurotrauma, 2012, 29, 1197-1208.                                             | 3.4 | 93        |
| 84 | Hypersensitive Glutamate Signaling Correlates with the Development of Late-Onset Behavioral<br>Morbidity in Diffuse Brain-Injured Circuitry. Journal of Neurotrauma, 2012, 29, 187-200.                                           | 3.4 | 67        |
| 85 | Comparison of rat sensory behavioral tasks to detect somatosensory morbidity after diffuse<br>brain-injury. Behavioural Brain Research, 2012, 226, 197-204.                                                                       | 2.2 | 39        |
| 86 | Rod microglia: elongation, alignment, and coupling to form trains across the somatosensory cortex after experimental diffuse brain injury. Journal of Neuroinflammation, 2012, 9, 247.                                            | 7.2 | 141       |
| 87 | Morphological and genetic activation of microglia after diffuse traumatic brain injury in the rat.<br>Neuroscience, 2012, 225, 65-75.                                                                                             | 2.3 | 163       |
| 88 | Substantia nigra vulnerability after a single moderate diffuse brain injury in the rat. Experimental<br>Neurology, 2012, 234, 8-19.                                                                                               | 4.1 | 38        |
| 89 | Neurodegeneration in the somatosensory cortex after experimental diffuse brain injury. Brain Structure and Function, 2012, 217, 49-61.                                                                                            | 2.3 | 75        |
| 90 | Lateral Fluid Percussion: Model of Traumatic Brain Injury in Mice. Journal of Visualized Experiments, 2011, , .                                                                                                                   | 0.3 | 87        |

| #   | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Diffuse traumatic brain injury initially attenuates and later expands activation of the rat<br>somatosensory whisker circuit concomitant with neuroplastic responses. Brain Research, 2010, 1323,<br>161-173.                                                | 2.2 | 76        |
| 92  | Diffuse Brain Injury Elevates Tonic Glutamate Levels and Potassium-Evoked Glutamate Release in<br>Discrete Brain Regions at Two Days Post-Injury: An Enzyme-Based Microelectrode Array Study. Journal<br>of Neurotrauma, 2010, 27, 889-899.                  | 3.4 | 129       |
| 93  | The Whisker Nuisance Task Identifies a Late-Onset, Persistent Sensory Sensitivity in Diffuse<br>Brain-Injured Rats. Journal of Neurotrauma, 2010, 27, 695-706.                                                                                               | 3.4 | 95        |
| 94  | Brain Injury Forces of Moderate Magnitude Elicit the Fencing Response. Medicine and Science in Sports and Exercise, 2009, 41, 1687-1697.                                                                                                                     | 0.4 | 88        |
| 95  | Fluid Percussion Injury Model. Springer Protocols, 2009, , 369-384.                                                                                                                                                                                          | 0.3 | 17        |
| 96  | Perisomatic Thalamic Axotomy After Diffuse Traumatic Brain Injury Is Associated With Atrophy Rather<br>Than Cell Death. Journal of Neuropathology and Experimental Neurology, 2007, 66, 218-229.                                                             | 1.7 | 96        |
| 97  | Neuroinflammatory Responses After Experimental Diffuse Traumatic Brain Injury. Journal of<br>Neuropathology and Experimental Neurology, 2007, 66, 989-1001.                                                                                                  | 1.7 | 164       |
| 98  | Acute cognitive impairment after lateral fluid percussion brain injury recovers by 1 month: Evaluation by conditioned fear response. Behavioural Brain Research, 2007, 177, 347-357.                                                                         | 2.2 | 49        |
| 99  | Inbred Mouse Strains as a Tool To Analyze Hippocampal Neuronal Loss after Brain Injury: A<br>Stereological Study. Journal of Neurotrauma, 2006, 23, 1320-1329.                                                                                               | 3.4 | 25        |
| 100 | Photon correlation spectroscopy of brain mitochondrial populations: Application to traumatic brain injury. Experimental Neurology, 2006, 197, 318-329.                                                                                                       | 4.1 | 5         |
| 101 | Traumatic axonal injury in the perisomatic domain triggers ultrarapid secondary axotomy and<br>Wallerian degeneration. Experimental Neurology, 2006, 198, 350-360.                                                                                           | 4.1 | 98        |
| 102 | Mechanoporation Induced by Diffuse Traumatic Brain Injury: An Irreversible or Reversible Response to<br>Injury?. Journal of Neuroscience, 2006, 26, 3130-3140.                                                                                               | 3.6 | 161       |
| 103 | Lateral Fluid Percussion Brain Injury: A 15-Year Review and Evaluation. Journal of Neurotrauma, 2005, 22, 42-75.                                                                                                                                             | 3.4 | 487       |
| 104 | Mitochondrial damage and dysfunction in traumatic brain injury. Mitochondrion, 2004, 4, 705-713.                                                                                                                                                             | 3.4 | 177       |
| 105 | Structural and Functional Damage Sustained by Mitochondria after Traumatic Brain Injury in the Rat:<br>Evidence for Differentially Sensitive Populations in the Cortex and Hippocampus. Journal of Cerebral<br>Blood Flow and Metabolism, 2003, 23, 219-231. | 4.3 | 154       |
| 106 | Population-Level Epidemiology of Traumatic Brain Injury Concurrent with Domestic Violence in<br>Arizona, USA. SSRN Electronic Journal, 0, , .                                                                                                                | 0.4 | 0         |