
Richard John Webby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4501120/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular detection of influenza A viruses and H5 subtype among migratory Amur falcons (<i>Falco) Tj ETQq1</i>	1 0,78431 3.8431	4 rgBT /Over
2	Time-Dependent Proinflammatory Responses Shape Virus Interference during Coinfections of Influenza A Virus and Influenza D Virus. Viruses, 2022, 14, 224.	3.3	4
3	Distinct but connected avian influenza virus activities in wetlands and live poultry markets in Bangladesh, 2018–2019. Transboundary and Emerging Diseases, 2022, 69, .	3.0	2
4	Pre-existing humoral immunity to human common cold coronaviruses negatively impacts the protective SARS-CoV-2 antibody response. Cell Host and Microbe, 2022, 30, 83-96.e4.	11.0	64
5	Sentinel surveillance for influenza A viruses in Lahore District Pakistan in flu season 2015–2016. BMC Infectious Diseases, 2022, 22, 38.	2.9	2
6	SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters. Nature, 2022, 603, 687-692.	27.8	475
7	Birth cohort relative to an influenza A virus's antigenic cluster introduction drives patterns of children's antibody titers. PLoS Pathogens, 2022, 18, e1010317.	4.7	3
8	Development of a Mouse Model to Explore CD4 T Cell Specificity, Phenotype, and Recruitment to the Lung after Influenza B Infection. Pathogens, 2022, 11, 251.	2.8	4
9	Homotypic protection against influenza in a pediatric cohort in Managua, Nicaragua. Nature Communications, 2022, 13, 1190.	12.8	7
10	Defining the risk of SARS-CoV-2 variants on immune protection. Nature, 2022, 605, 640-652.	27.8	117
11	Induction of broadly reactive influenza antibodies increases susceptibility to autoimmunity. Cell Reports, 2022, 38, 110482.	6.4	7
12	Avian Influenza a H9N2 Viruses in Morocco, 2018–2019. Viruses, 2022, 14, 529.	3.3	6
13	Genetic and Antigenic Characteristics of Highly Pathogenic Avian Influenza A(H5N8) Viruses Circulating in Domestic Poultry in Egypt, 2017–2021. Microorganisms, 2022, 10, 595.	3.6	13
14	Swine H1N1 Influenza Virus Variants with Enhanced Polymerase Activity and HA Stability Promote Airborne Transmission in Ferrets. Journal of Virology, 2022, 96, e0010022.	3.4	8
15	In Vitro and In Vivo Antiviral Studies of New Heteroannulated 1,2,3-Triazole Glycosides Targeting the Neuraminidase of Influenza A Viruses. Pharmaceuticals, 2022, 15, 351.	3.8	10
16	Pleiotropic Effects of Influenza H1, H3, and B Baloxavir-Resistant Substitutions on Replication, Sensitivity to Baloxavir, and Interferon Expression. Antimicrobial Agents and Chemotherapy, 2022, , e0000922.	3.2	4
17	Global update on the susceptibilities of human influenza viruses to neuraminidase inhibitors and the cap-dependent endonuclease inhibitor baloxavir, 2018–2020. Antiviral Research, 2022, 200, 105281.	4.1	44
18	Host diversity and behavior determine patterns of interspecies transmission and geographic diffusion of avian influenza A subtypes among North American wild reservoir species. PLoS Pathogens, 2022, 18, e1009973.	4.7	9

#	Article	IF	CITATIONS
19	An adaptive, asymptomatic SARS-CoV-2 workforce screening program providing real-time, actionable monitoring of the COVID-19 pandemic. PLoS ONE, 2022, 17, e0268237.	2.5	3
20	ZBP1-dependent inflammatory cell death, PANoptosis, and cytokine storm disrupt IFN therapeutic efficacy during coronavirus infection. Science Immunology, 2022, 7, eabo6294.	11.9	82
21	A nucleic acid amplification testâ€based strategy does not help inform return to work for healthcare workers with COVIDâ€19. Influenza and Other Respiratory Viruses, 2022, 16, 851-853.	3.4	1
22	Severe acute respiratory syndrome coronavirus 2 and influenza A virus coâ€infection alters viral tropism and haematological composition in Syrian hamsters. Transboundary and Emerging Diseases, 2022, 69, .	3.0	7
23	Induced humoral immunity of different types of vaccines against most common variants of SARS-CoV-2 in Egypt prior to Omicron outbreak. Vaccine, 2022, 40, 4303-4306.	3.8	2
24	An epitope-optimized human H3N2 influenza vaccine induces broadly protective immunity in mice and ferrets. Npj Vaccines, 2022, 7, .	6.0	6
25	Expanding Mouse-Adapted Yamagata-like Influenza B Viruses in Eggs Enhances In Vivo Lethality in BALB/c Mice. Viruses, 2022, 14, 1299.	3.3	2
26	Insights into Genetic Characteristics and Virological Features of Endemic Avian Influenza A (H9N2) Viruses in Egypt from 2017–2021. Viruses, 2022, 14, 1484.	3.3	4
27	H5 Influenza Viruses in Egypt. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a038745.	6.2	15
28	Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes. Cell, 2021, 184, 149-168.e17.	28.9	923
29	Human postâ€infection serological response to the spike and nucleocapsid proteins of SARSâ€CoVâ€2. Influenza and Other Respiratory Viruses, 2021, 15, 7-12.	3.4	4
30	Tropism of SARS-CoV-2, SARS-CoV, and Influenza Virus in Canine Tissue Explants. Journal of Infectious Diseases, 2021, 224, 821-830.	4.0	5
31	Pathogenic assessment of avian influenza viruses in migratory birds. Emerging Microbes and Infections, 2021, 10, 565-577.	6.5	7
32	Antigenic and molecular characterization of low pathogenic avian influenza A(H9N2) viruses in sub-Saharan Africa from 2017 through 2019. Emerging Microbes and Infections, 2021, 10, 753-761.	6.5	10
33	Epigraph hemagglutinin vaccine induces broad cross-reactive immunity against swine H3 influenza virus. Nature Communications, 2021, 12, 1203.	12.8	14
34	Impact of the COVID-19 nonpharmaceutical interventions on influenza and other respiratory viral infections in New Zealand. Nature Communications, 2021, 12, 1001.	12.8	268
35	Incidence, household transmission, and neutralizing antibody seroprevalence of Coronavirus Disease 2019 in Egypt: Results of a community-based cohort. PLoS Pathogens, 2021, 17, e1009413.	4.7	21
36	Molecular Characterization of Closely Related H6N2 Avian Influenza Viruses Isolated from Turkey, Egypt, and Uganda. Viruses, 2021, 13, 607.	3.3	4

#	Article	IF	CITATIONS
37	Activated CD4+ TÂcells and CD14hiCD16+ monocytes correlate with antibody response following influenza virus infection in humans. Cell Reports Medicine, 2021, 2, 100237.	6.5	4
38	The evolution and future of influenza pandemic preparedness. Experimental and Molecular Medicine, 2021, 53, 737-749.	7.7	88
39	Interplay between H1N1 influenza a virus infection, extracellular and intracellular respiratory tract pH, and host responses in a mouse model. PLoS ONE, 2021, 16, e0251473.	2.5	3
40	Reinfection with two genetically distinct SARSâ€CoVâ€⊋ viruses within 19 days. Journal of Medical Virology, 2021, 93, 5700-5703.	5.0	12
41	Baloxavir Treatment Delays Influenza B Virus Transmission in Ferrets and Results in Limited Generation of Drug-Resistant Variants. Antimicrobial Agents and Chemotherapy, 2021, 65, e0113721.	3.2	5
42	Infection and Vaccine-Induced Neutralizing-Antibody Responses to the SARS-CoV-2 B.1.617 Variants. New England Journal of Medicine, 2021, 385, 664-666.	27.0	297
43	Cross-reactive Antibody Response to mRNA SARS-CoV-2 Vaccine After Recent COVID-19-Specific Monoclonal Antibody Therapy. Open Forum Infectious Diseases, 2021, 8, ofab420.	0.9	12
44	A vaccine-induced public antibody protects against SARS-CoV-2 and emerging variants. Immunity, 2021, 54, 2159-2166.e6.	14.3	52
45	Serological Surveillance of Influenza D Virus in Ruminants and Swine in West and East Africa, 2017–2020. Viruses, 2021, 13, 1749.	3.3	11
46	Coding-Complete Genome Sequence of Swine Influenza Virus Isolate A/Swine/Karaganda/04/2020 (H1N1) from Kazakhstan. Microbiology Resource Announcements, 2021, 10, e0078621.	0.6	2
47	Effect of processed aloe vera gel on immunogenicity in inactivated quadrivalent influenza vaccine and upper respiratory tract infection in healthy adults: A randomized double-blind placebo-controlled trial. Phytomedicine, 2021, 91, 153668.	5.3	2
48	Risk Assessment for Highly Pathogenic Avian Influenza A(H5N6/H5N8) Clade 2.3.4.4 Viruses. Emerging Infectious Diseases, 2021, 27, 2619-2627.	4.3	12
49	Month of Influenza Virus Vaccination Influences Antibody Responses in Children and Adults. Vaccines, 2021, 9, 68.	4.4	4
50	Multiple polymerase acidic (PA) I38X substitutions in influenza A(H1N1)pdm09 virus permit polymerase activity and cause reduced baloxavir inhibition. Journal of Antimicrobial Chemotherapy, 2021, 76, 957-960.	3.0	8
51	Ancestral sequence reconstruction pinpoints adaptations that enable avian influenza virus transmission in pigs. Nature Microbiology, 2021, 6, 1455-1465.	13.3	7
52	Risk Factors of Influenza-Associated Respiratory Illnesses Reported to a Sentinel Hospital of Lahore, Pakistan: 2015-2016. Canadian Journal of Infectious Diseases and Medical Microbiology, 2021, 2021, 1-8.	1.9	1
53	Development of a SARS-CoV-2 Vaccine Candidate Using Plant-Based Manufacturing and a Tobacco Mosaic Virus-like Nano-Particle. Vaccines, 2021, 9, 1347.	4.4	37
54	Detection of a Novel Reassortant H9N9 Avian Influenza Virus in Free-Range Ducks in Bangladesh. Viruses, 2021, 13, 2357.	3.3	2

#	Article	IF	CITATIONS
55	Biosafety risk assessment for production of candidate vaccine viruses to protect humans from zoonotic highly pathogenic avian influenza viruses. Influenza and Other Respiratory Viruses, 2020, 14, 215-225.	3.4	5
56	Influenza B viruses from different genetic backgrounds are variably impaired by neuraminidase inhibitor resistance–associated substitutions. Antiviral Research, 2020, 173, 104669.	4.1	4
57	Transmission experiments support clade-level differences in the transmission and pathogenicity of Cambodian influenza A/H5N1 viruses. Emerging Microbes and Infections, 2020, 9, 1702-1711.	6.5	5
58	Antibody Responses to SARS-CoV-2 Antigens in Humans and Animals. Vaccines, 2020, 8, 684.	4.4	11
59	Prevalence and Distribution of Avian Influenza Viruses in Domestic Ducks at the Waterfowl-Chicken Interface in Wetlands. Pathogens, 2020, 9, 953.	2.8	10
60	Impaired NLRP3 inflammasome activation/pyroptosis leads to robust inflammatory cell death via caspase-8/RIPK3 during coronavirus infection. Journal of Biological Chemistry, 2020, 295, 14040-14052.	3.4	144
61	Influenza A Viruses in Ruddy Turnstones (Arenaria interpres); Connecting Wintering and Migratory Sites with an Ecological Hotspot at Delaware Bay. Viruses, 2020, 12, 1205.	3.3	6
62	Exuberant fibroblast activity compromises lung function via ADAMTS4. Nature, 2020, 587, 466-471.	27.8	108
63	<i>In Vitro</i> Profiling of Laninamivir-Resistant Substitutions in N3 to N9 Avian Influenza Virus Neuraminidase Subtypes and Their Association with <i>In Vivo</i> Susceptibility. Journal of Virology, 2020, 95, .	3.4	3
64	Monoclonal Antibody Therapy Protects Pharmacologically Immunosuppressed Mice from Lethal Infection with Influenza B Virus. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	3
65	Continued Evolution of H5Nx Avian Influenza Viruses in Bangladeshi Live Poultry Markets: Pathogenic Potential in Poultry and Mammalian Models. Journal of Virology, 2020, 94, .	3.4	6
66	Incidence and Seroprevalence of Avian Influenza in a Cohort of Backyard Poultry Growers, Egypt, August 2015–March 2019. Emerging Infectious Diseases, 2020, 26, 2129-2136.	4.3	19
67	New Diagnostic Assays for Differential Diagnosis Between the Two Distinct Lineages of Bovine Influenza D Viruses and Human Influenza C Viruses. Frontiers in Veterinary Science, 2020, 7, 605704.	2.2	1
68	Pandemic potential of highly pathogenic avian influenza clade 2.3.4.4 A(H5) viruses. Reviews in Medical Virology, 2020, 30, e2099.	8.3	70
69	Influenza A and B viruses with reduced baloxavir susceptibility display attenuated in vitro fitness but retain ferret transmissibility. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8593-8601.	7.1	43
70	Infection and Rapid Transmission of SARS-CoV-2 in Ferrets. Cell Host and Microbe, 2020, 27, 704-709.e2.	11.0	815
71	Limited Cross-Protection Provided by Prior Infection Contributes to High Prevalence of Influenza D Viruses in Cattle. Journal of Virology, 2020, 94, .	3.4	8
72	Histone Deacetylase 6 Knockout Mice Exhibit Higher Susceptibility to Influenza A Virus Infection. Viruses, 2020, 12, 728.	3.3	10

#	Article	IF	CITATIONS
73	Avian influenza at animalâ€human interface: Oneâ€health challenge in live poultry retail stalls of Chakwal, Pakistan. Influenza and Other Respiratory Viruses, 2020, 14, 257-265.	3.4	9
74	Characterizing Emerging Canine H3 Influenza Viruses. PLoS Pathogens, 2020, 16, e1008409.	4.7	29
75	Common childhood vaccines do not elicit a cross-reactive antibody response against SARS-CoV-2. PLoS ONE, 2020, 15, e0241471.	2.5	11
76	Risk Mapping of Influenza D Virus Occurrence in Ruminants and Swine in Togo Using a Spatial Multicriteria Decision Analysis Approach. Viruses, 2020, 12, 128.	3.3	16
77	HA stabilization promotes replication and transmission of swine H1N1 gamma influenza viruses in ferrets. ELife, 2020, 9, .	6.0	19
78	Risk Factors and Attack Rates of Seasonal Influenza Infection: Results of the Southern Hemisphere Influenza and Vaccine Effectiveness Research and Surveillance (SHIVERS) Seroepidemiologic Cohort Study. Journal of Infectious Diseases, 2019, 219, 347-357.	4.0	43
79	Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in Dromedary Camels in Africa and Middle East. Viruses, 2019, 11, 717.	3.3	38
80	A Modular Cytokine Analysis Method Reveals Novel Associations With Clinical Phenotypes and Identifies Sets of Co-signaling Cytokines Across Influenza Natural Infection Cohorts and Healthy Controls. Frontiers in Immunology, 2019, 10, 1338.	4.8	25
81	A(H9N2) influenza viruses associated with chicken mortality in outbreaks in Algeria 2017. Influenza and Other Respiratory Viruses, 2019, 13, 622-626.	3.4	15
82	Active surveillance and genetic evolution of avian influenza viruses in Egypt, 2016–2018. Emerging Microbes and Infections, 2019, 8, 1370-1382.	6.5	29
83	Baseline Serum Vitamin A and D Levels Determine Benefit of Oral Vitamin A&D Supplements to Humoral Immune Responses Following Pediatric Influenza Vaccination. Viruses, 2019, 11, 907.	3.3	69
84	Evidence of the Presence of Low Pathogenic Avian Influenza A Viruses in Wild Waterfowl in 2018 in South Africa. Pathogens, 2019, 8, 163.	2.8	8
85	Diversity of Dromedary Camel Coronavirus HKU23 in African Camels Revealed Multiple Recombination Events among Closely Related Betacoronaviruses of the Subgenus Embecovirus. Journal of Virology, 2019, 93, .	3.4	29
86	Optimizing T-705 (favipiravir) treatment of severe influenza B virus infection in the immunocompromised mouse model. Journal of Antimicrobial Chemotherapy, 2019, 74, 1333-1341.	3.0	6
87	Surveillance for avian influenza viruses in wild birds at live bird markets, Egypt, 2014â€2016. Influenza and Other Respiratory Viruses, 2019, 13, 407-414.	3.4	20
88	Continuing evolution of highly pathogenic H5N1 viruses in Bangladeshi live poultry markets. Emerging Microbes and Infections, 2019, 8, 650-661.	6.5	23
89	Middle East respiratory syndrome coronavirus infection in non-camelid domestic mammals. Emerging Microbes and Infections, 2019, 8, 103-108.	6.5	42
90	A Novel Neuraminidase-Dependent Hemagglutinin Cleavage Mechanism Enables the Systemic Spread of an H7N6 Avian Influenza Virus. MBio, 2019, 10, .	4.1	10

#	Article	IF	CITATIONS
91	Influenza H1 Mosaic Hemagglutinin Vaccine Induces Broad Immunity and Protection in Mice. Vaccines, 2019, 7, 195.	4.4	8
92	Evolution of H5-Type Avian Influenza A Virus Towards Mammalian Tropism in Egypt, 2014 to 2015. Pathogens, 2019, 8, 224.	2.8	2
93	A Recombinant Influenza A/H1N1 Carrying A Short Immunogenic Peptide of MERS-CoV as Bivalent Vaccine in BALB/c Mice. Pathogens, 2019, 8, 281.	2.8	4
94	Safety and immunogenicity of influenza A(H5N1) vaccine stored up to twelve years in the National Pre-Pandemic Influenza Vaccine Stockpile (NPIVS). Vaccine, 2019, 37, 435-443.	3.8	12
95	Isolation and Characterization of a Distinct Influenza A Virus from Egyptian Bats. Journal of Virology, 2019, 93, .	3.4	42
96	MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity. Proceedings of the United States of America, 2018, 115, 3144-3149.	7.1	142
97	Identification of the I38T PA Substitution as a Resistance Marker for Next-Generation Influenza Virus Endonuclease Inhibitors. MBio, 2018, 9, .	4.1	53
98	Replication and pathogenic potential of influenza A virus subtypes H3, H7, and H15 from free-range ducks in Bangladesh in mammals. Emerging Microbes and Infections, 2018, 7, 1-13.	6.5	13
99	Severe Influenza Is Characterized by Prolonged Immune Activation: Results From the SHIVERS Cohort Study. Journal of Infectious Diseases, 2018, 217, 245-256.	4.0	44
100	Virological and pathological characterization of an avian H1N1 influenza A virus. Archives of Virology, 2018, 163, 1153-1162.	2.1	6
101	Influenza Virus: Dealing with a Drifting and Shifting Pathogen. Viral Immunology, 2018, 31, 174-183.	1.3	232
102	Comparison of the pathogenic potential of highly pathogenic avian influenza (HPAI) H5N6, and H5N8 viruses isolated in South Korea during the 2016–2017 winter season. Emerging Microbes and Infections, 2018, 7, 1-10.	6.5	32
103	Screening for Neuraminidase Inhibitor Resistance Markers among Avian Influenza Viruses of the N4, N5, N6, and N8 Neuraminidase Subtypes. Journal of Virology, 2018, 92, .	3.4	42
104	Dysregulated T-Helper Type 1 (Th1):Th2 Cytokine Profile and Poor Immune Response in Pregnant Ferrets Infected With 2009 Pandemic Influenza A(H1N1) Virus. Journal of Infectious Diseases, 2018, 217, 438-442.	4.0	15
105	Evidence of infection with avian, human, and swine influenza viruses in pigs in Cairo, Egypt. Archives of Virology, 2018, 163, 359-364.	2.1	24
106	A Y161F Hemagglutinin Substitution Increases Thermostability and Improves Yields of 2009 H1N1 Influenza A Virus in Cells. Journal of Virology, 2018, 92, .	3.4	21
107	Migratory birds in southern Brazil are a source of multiple avian influenza virus subtypes. Influenza and Other Respiratory Viruses, 2018, 12, 220-231.	3.4	17
108	Atypical antibody responses to influenza. Journal of Thoracic Disease, 2018, 10, S2238-S2247.	1.4	7

#	Article	IF	CITATIONS
109	Protein Microarray Analysis of the Specificity and Cross-Reactivity of Influenza Virus Hemagglutinin-Specific Antibodies. MSphere, 2018, 3, .	2.9	45
110	H13 influenza viruses in wild birds have undergone genetic and antigenic diversification in nature. Virus Genes, 2018, 54, 543-549.	1.6	5
111	Efficacy of commercial vaccines against newly emerging avian influenza H5N8 virus in Egypt. Scientific Reports, 2018, 8, 9697.	3.3	36
112	Genetic Evidence Supports Sporadic and Independent Introductions of Subtype H5 Low-Pathogenic Avian Influenza A Viruses from Wild Birds to Domestic Poultry in North America. Journal of Virology, 2018, 92, .	3.4	23
113	H9N2 influenza viruses from Bangladesh: Transmission in chicken and New World quail. Influenza and Other Respiratory Viruses, 2018, 12, 814-817.	3.4	14
114	Genetic characterization and pathogenic potential of H10 avian influenza viruses isolated from live poultry markets in Bangladesh. Scientific Reports, 2018, 8, 10693.	3.3	10
115	Influenza D Virus Infection in Feral Swine Populations, United States. Emerging Infectious Diseases, 2018, 24, 1020-1028.	4.3	48
116	An I436N substitution confers resistance of influenza A(H1N1)pdm09 viruses to multiple neuraminidase inhibitors without affecting viral fitness. Journal of General Virology, 2018, 99, 292-302.	2.9	11
117	Neuraminidase inhibitor susceptibility and neuraminidase enzyme kinetics of human influenza A and B viruses circulating in Thailand in 2010–2015. PLoS ONE, 2018, 13, e0190877.	2.5	7
118	Lack of serological evidence of Middle East respiratory syndrome coronavirus infection in virus exposed camel abattoir workers in Nigeria, 2016. Eurosurveillance, 2018, 23, .	7.0	21
119	Improving the selection and development of influenza vaccine viruses – Report of a WHO informal consultation on improving influenza vaccine virus selection, Hong Kong SAR, China, 18–20 November 2015. Vaccine, 2017, 35, 1104-1109.	3.8	44
120	Low-Pathogenic Influenza A Viruses in North American Diving Ducks Contribute to the Emergence of a Novel Highly Pathogenic Influenza A(H7N8) Virus. Journal of Virology, 2017, 91, .	3.4	27
121	Rapid acquisition of polymorphic virulence markers during adaptation of highly pathogenic avian influenza H5N8 virus in the mouse. Scientific Reports, 2017, 7, 40667.	3.3	13
122	Insight into live bird markets of Bangladesh: an overview of the dynamics of transmission of H5N1 and H9N2 avian influenza viruses. Emerging Microbes and Infections, 2017, 6, 1-8.	6.5	68
123	H5 influenza, a global update. Journal of Microbiology, 2017, 55, 196-203.	2.8	74
124	Manipulation of neuraminidase packaging signals and hemagglutinin residues improves the growth of A/Anhui/1/2013 (H7N9) influenza vaccine virus yield in eggs. Vaccine, 2017, 35, 1424-1430.	3.8	14
125	Vascular Permeability Drives Susceptibility to Influenza Infection in a Murine Model of Sickle Cell Disease. Scientific Reports, 2017, 7, 43308.	3.3	7
126	Evaluation of multivalent H2 influenza pandemic vaccines in mice. Vaccine, 2017, 35, 1455-1463.	3.8	6

#	Article	IF	CITATIONS
127	Poly-γ-glutamic acid/chitosan nanogel greatly enhances the efficacy and heterosubtypic cross-reactivity of H1N1 pandemic influenza vaccine. Scientific Reports, 2017, 7, 44839.	3.3	33
128	Pathogenicity and transmission of a swine influenza A(H6N6) virus. Emerging Microbes and Infections, 2017, 6, 1-13.	6.5	19
129	The changing landscape of A H7N9 influenza virus infections in China. Lancet Infectious Diseases, The, 2017, 17, 783-784.	9.1	18
130	The immune correlates of protection for an avian influenza H5N1 vaccine in the ferret model using oil-in-water adjuvants. Scientific Reports, 2017, 7, 44727.	3.3	19
131	Systematic, active surveillance for Middle East respiratory syndrome coronavirus in camels in Egypt. Emerging Microbes and Infections, 2017, 6, 1-7.	6.5	55
132	Molecular basis of mammalian transmissibility of avian H1N1 influenza viruses and their pandemic potential. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11217-11222.	7.1	24
133	Absence of clinical disease and contact transmission of HPAI H5NX clade 2.3.4.4 from North America in experimentally infected pigs. Influenza and Other Respiratory Viruses, 2017, 11, 464-470.	3.4	14
134	Lineageâ€specific epitope profiles for <scp>HPAI</scp> H5 preâ€pandemic vaccine selection and evaluation. Influenza and Other Respiratory Viruses, 2017, 11, 445-456.	3.4	7
135	H5N1 influenza vaccine induces a less robust neutralizing antibody response than seasonal trivalent and H7N9 influenza vaccines. Npj Vaccines, 2017, 2, 16.	6.0	12
136	Zoonotic Risk, Pathogenesis, and Transmission of Avian-Origin H3N2 Canine Influenza Virus. Journal of Virology, 2017, 91, .	3.4	15
137	Role of domestic ducks in the emergence of a new genotype of highly pathogenic H5N1 avian influenza A viruses in Bangladesh. Emerging Microbes and Infections, 2017, 6, 1-13.	6.5	34
138	Pathogenicity and peramivir efficacy in immunocompromised murine models of influenza B virus infection. Scientific Reports, 2017, 7, 7345.	3.3	13
139	Protein-Structure Assisted Optimization of 4,5-Dihydroxypyrimidine-6-Carboxamide Inhibitors of Influenza Virus Endonuclease. Scientific Reports, 2017, 7, 17139.	3.3	14
140	A pharmacologically immunosuppressed mouse model for assessing influenza B virus pathogenicity and oseltamivir treatment. Antiviral Research, 2017, 148, 20-31.	4.1	13
141	Longitudinal study of Middle East Respiratory Syndrome coronavirus infection in dromedary camel herds in Saudi Arabia, 2014–2015. Emerging Microbes and Infections, 2017, 6, 1-7.	6.5	59
142	Replicating Single-Cycle Adenovirus Vectors Generate Amplified Influenza Vaccine Responses. Journal of Virology, 2017, 91, .	3.4	36
143	An Amino Acid in the Stalk Domain of N1 Neuraminidase Is Critical for Enzymatic Activity. Journal of Virology, 2017, 91, .	3.4	18
144	Biological characterization of highly pathogenic avian influenza H5N1 viruses that infected humans in Egypt in 2014-2015. Archives of Virology, 2017, 162, 687-700.	2.1	13

#	Article	lF	CITATIONS
145	G45R on nonstructural protein 1 of influenza A virus contributes to virulence by increasing the expression of proinflammatory cytokines in mice. Archives of Virology, 2017, 162, 45-55.	2.1	3
146	H1N1 influenza viruses varying widely in hemagglutinin stability transmit efficiently from swine to swine and to ferrets. PLoS Pathogens, 2017, 13, e1006276.	4.7	29
147	Genesis of Influenza A(H5N8) Viruses. Emerging Infectious Diseases, 2017, 23, 1368-1371.	4.3	42
148	Novel reassortant H9N2 viruses in pigeons and evidence for antigenic diversity of H9N2 viruses isolated from quails in Egypt. Journal of General Virology, 2017, 98, 548-562.	2.9	44
149	Highly pathogenic avian influenza H5N1 clade 2.3.2.1 and clade 2.3.4 viruses do not induce a clade-specific phenotype in mallard ducks. Journal of General Virology, 2017, 98, 1232-1244.	2.9	10
150	Genetic characterization of highly pathogenic avian influenza A H5N8 viruses isolated from wild birds in Egypt. Journal of General Virology, 2017, 98, 1573-1586.	2.9	54
151	Novel avian paramyxovirus (APMV-15) isolated from a migratory bird in South America. PLoS ONE, 2017, 12, e0177214.	2.5	22
152	Genetic characterisation of novel, highly pathogenic avian influenza (HPAI) H5N6 viruses isolated in birds, South Korea, November 2016. Eurosurveillance, 2017, 22, .	7.0	44
153	Avian Influenza A(H5N1) Virus in Egypt. Emerging Infectious Diseases, 2016, 22, 379-388.	4.3	79
154	G45R mutation in the nonstructural protein 1 of A/Puerto Rico/8/1934 (H1N1) enhances viral replication independent of dsRNA-binding activity and type I interferon biology. Virology Journal, 2016, 13, 127.	3.4	4
155	Ecosystem Interactions Underlie the Spread of Avian Influenza A Viruses with Pandemic Potential. PLoS Pathogens, 2016, 12, e1005620.	4.7	48
156	Novel Highly Pathogenic Avian A(H5N2) and A(H5N8) Influenza Viruses of Clade 2.3.4.4 from North America Have Limited Capacity for Replication and Transmission in Mammals. MSphere, 2016, 1, .	2.9	56
157	Combinations of Oseltamivir and T-705 Extend the Treatment Window for Highly Pathogenic Influenza A(H5N1) Virus Infection in Mice. Scientific Reports, 2016, 6, 26742.	3.3	48
158	A Phylogeny-Based Global Nomenclature System and Automated Annotation Tool for H1 Hemagglutinin Genes from Swine Influenza A Viruses. MSphere, 2016, 1, .	2.9	151
159	Understanding immune responses to the influenza vaccine. Nature Medicine, 2016, 22, 1387-1388.	30.7	6
160	Pathogenesis of Influenza D Virus in Cattle. Journal of Virology, 2016, 90, 5636-5642.	3.4	125
161	The C-Terminal Tail of TRIM56 Dictates Antiviral Restriction of Influenza A and B Viruses by Impeding Viral RNA Synthesis. Journal of Virology, 2016, 90, 4369-4382.	3.4	74
162	The replication of Bangladeshi H9N2 avian influenza viruses carrying genes from H7N3 in mammals. Emerging Microbes and Infections, 2016, 5, 1-12.	6.5	28

#	Article	IF	CITATIONS
163	Virologic Differences Do Not Fully Explain the Diversification of Swine Influenza Viruses in the United States. Journal of Virology, 2016, 90, 10074-10082.	3.4	3
164	Influenza surveillance on â€~foie gras' duck farms in Bulgaria, 2008–2012. Influenza and Other Respiratory Viruses, 2016, 10, 98-108.	3.4	14
165	Re-emergence of amantadine-resistant variants among highly pathogenic avian influenza H5N1 viruses in Egypt. Infection, Genetics and Evolution, 2016, 46, 102-109.	2.3	20
166	The Continuing Evolution of H5N1 and H9N2 Influenza Viruses in Bangladesh Between 2013 and 2014. Avian Diseases, 2016, 60, 108-117.	1.0	35
167	Pandemic Seasonal H1N1 Reassortants Recovered from Patient Material Display a Phenotype Similar to That of the Seasonal Parent. Journal of Virology, 2016, 90, 7647-7656.	3.4	0
168	Molecular requirements for a pandemic influenza virus: An acid-stable hemagglutinin protein. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1636-1641.	7.1	105
169	The Hemagglutinin Stem-Binding Monoclonal Antibody VIS410 Controls Influenza Virus-Induced Acute Respiratory Distress Syndrome. Antimicrobial Agents and Chemotherapy, 2016, 60, 2118-2131.	3.2	46
170	Correlation Between the Interval of Influenza Virus Infectivity and Results of Diagnostic Assays in a Ferret Model. Journal of Infectious Diseases, 2016, 213, 407-410.	4.0	21
171	Live-attenuated H7N9 influenza vaccine is weak, yet strong. Lancet Infectious Diseases, The, 2016, 16, 266-267.	9.1	1
172	Identification and characterization of influenza variants resistant to a viral endonuclease inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3669-3674.	7.1	51
173	The Interaction between Respiratory Pathogens and Mucus. Cell Host and Microbe, 2016, 19, 159-168.	11.0	221
174	Generation of a reassortant avian influenza virus H5N2 vaccine strain capable of protecting chickens against infection with Egyptian H5N1 and H9N2 viruses. Vaccine, 2016, 34, 218-224.	3.8	13
175	Recombinant influenza virus with a pandemic H2N2 polymerase complex has a higher adaptive potential than one with seasonal H2N2 polymerase complex. Journal of General Virology, 2016, 97, 611-619.	2.9	2
176	Recognition of influenza H3N2 variant virus by human neutralizing antibodies. JCI Insight, 2016, 1, .	5.0	20
177	Respiratory Mucosal Proteome Quantification in Human Influenza Infections. PLoS ONE, 2016, 11, e0153674.	2.5	24
178	Serological Evidence of Human Infection with Avian Influenza A H7virus in Egyptian Poultry Growers. PLoS ONE, 2016, 11, e0155294.	2.5	6
179	Competitive Fitness of Influenza B Viruses Possessing E119A and H274Y Neuraminidase Inhibitor Resistance–Associated Substitutions in Ferrets. PLoS ONE, 2016, 11, e0159847.	2.5	9
180	The global antigenic diversity of swine influenza A viruses. ELife, 2016, 5, e12217.	6.0	146

#	Article	IF	CITATIONS
181	Southern Hemisphere Influenza and Vaccine Effectiveness Research and Surveillance. Influenza and Other Respiratory Viruses, 2015, 9, 179-190.	3.4	28
182	Detection of Avian H7N9 Influenza A Viruses in the Yangtze Delta Region of China During Early H7N9 Outbreaks. Avian Diseases, 2015, 60, 118.	1.0	4
183	Changes to the dynamic nature of hemagglutinin and the emergence of the 2009 pandemic H1N1 influenza virus. Scientific Reports, 2015, 5, 12828.	3.3	10
184	Influenza A(H1N1)pdm09 virus in pigs, Togo, 2013. Veterinary Microbiology, 2015, 177, 201-205.	1.9	16
185	Egg-adaptive mutations in H3N2v vaccine virus enhance egg-based production without loss of antigenicity or immunogenicity. Vaccine, 2015, 33, 3186-3192.	3.8	16
186	<i>Editorial Commentary:</i> This Little Piggy Went to Market—but Perhaps Should Have Stayed Home. Clinical Infectious Diseases, 2015, 61, 1363-1364.	5.8	0
187	Adaptation of Pandemic H2N2 Influenza A Viruses in Humans. Journal of Virology, 2015, 89, 2442-2447.	3.4	29
188	Identification of the source of A (H10N8) virus causing human infection. Infection, Genetics and Evolution, 2015, 30, 159-163.	2.3	18
189	Influenza A viruses of swine circulating in the United States during 2009–2014 are susceptible to neuraminidase inhibitors but show lineage-dependent resistance to adamantanes. Antiviral Research, 2015, 117, 10-19.	4.1	15
190	Emergence and Evolution of H10 Subtype Influenza Viruses in Poultry in China. Journal of Virology, 2015, 89, 3534-3541.	3.4	61
191	An Anti-H5N1 Influenza Virus FcDART Antibody Is a Highly Efficacious Therapeutic Agent and Prophylactic against H5N1 Influenza Virus Infection. Journal of Virology, 2015, 89, 4549-4561.	3.4	11
192	New reassortant and enzootic European swine influenza viruses transmit efficiently through direct contact in the ferret model. Journal of General Virology, 2015, 96, 1603-1612.	2.9	6
193	Impact of Adjuvants on the Immunogenicity and Efficacy of Split-Virion H7N9 Vaccine in Ferrets. Journal of Infectious Diseases, 2015, 212, 542-551.	4.0	19
194	Dissemination, divergence and establishment of H7N9 influenza viruses in China. Nature, 2015, 522, 102-105.	27.8	201
195	Diverse Heterologous Primary Infections Radically Alter Immunodominance Hierarchies and Clinical Outcomes Following H7N9 Influenza Challenge in Mice. PLoS Pathogens, 2015, 11, e1004642.	4.7	20
196	Neuraminidase: Another Piece of the Influenza Vaccine Puzzle. Journal of Infectious Diseases, 2015, 212, 1180-1181.	4.0	5
197	Mammalian adaptation of influenza A(H7N9) virus is limited by a narrow genetic bottleneck. Nature Communications, 2015, 6, 6553.	12.8	90
198	Pandemic Swine H1N1 Influenza Viruses with Almost Undetectable Neuraminidase Activity Are Not Transmitted via Aerosols in Ferrets and Are Inhibited by Human Mucus but Not Swine Mucus. Journal of Virology, 2015, 89, 5935-5948.	3.4	36

#	Article	IF	CITATIONS
199	Influenza D virus infection in Mississippi beef cattle. Virology, 2015, 486, 28-34.	2.4	115
200	Unique Determinants of Neuraminidase Inhibitor Resistance among N3, N7, and N9 Avian Influenza Viruses. Journal of Virology, 2015, 89, 10891-10900.	3.4	43
201	Profiling and Characterization of Influenza Virus N1 Strains Potentially Resistant to Multiple Neuraminidase Inhibitors. Journal of Virology, 2015, 89, 287-299.	3.4	54
202	Avian Influenza A(H5N1) and A(H9N2) Seroprevalence and Risk Factors for Infection Among Egyptians: A Prospective, Controlled Seroepidemiological Study. Journal of Infectious Diseases, 2015, 211, 1399-1407.	4.0	69
203	Construction and Immunogenicity Evaluation of Recombinant Influenza A Viruses Containing Chimeric Hemagglutinin Genes Derived from Genetically Divergent Influenza A H1N1 Subtype Viruses. PLoS ONE, 2015, 10, e0127649.	2.5	6
204	Centralized Consensus Hemagglutinin Genes Induce Protective Immunity against H1, H3 and H5 Influenza Viruses. PLoS ONE, 2015, 10, e0140702.	2.5	14
205	Molecular Characterization of Subtype H11N9 Avian Influenza Virus Isolated from Shorebirds in Brazil. PLoS ONE, 2015, 10, e0145627.	2.5	9
206	Household Transmission of Zoonotic Influenza Viruses in a Cohort of Egyptian Poultry Growers. JMIR Research Protocols, 2015, 4, e74.	1.0	8
207	Avian Influenza Virus (H11N9) in Migratory Shorebirds Wintering in the Amazon Region, Brazil. PLoS ONE, 2014, 9, e110141.	2.5	41
208	Implementing hospital-based surveillance for severe acute respiratory infections caused by influenza and other respiratory pathogens in New Zealand. Western Pacific Surveillance and Response Journal: WPSAR, 2014, 5, 23-30.	0.6	36
209	Single-dose monomeric HA subunit vaccine generates full protection from influenza challenge. Human Vaccines and Immunotherapeutics, 2014, 10, 586-595.	3.3	38
210	Multiple introductions of highly pathogenic avian influenza H5N1 viruses into Bangladesh. Emerging Microbes and Infections, 2014, 3, 1-14.	6.5	42
211	Genesis of avian influenza H9N2 in Bangladesh. Emerging Microbes and Infections, 2014, 3, 1-17.	6.5	46
212	Possible Role of Songbirds and Parakeets in Transmission of Influenza A(H7N9) Virus to Humans. Emerging Infectious Diseases, 2014, 20, 380-5.	4.3	32
213	Active Surveillance for Avian Influenza Virus, Egypt, 2010–2012. Emerging Infectious Diseases, 2014, 20, 542-551.	4.3	71
214	Seasonal Influenza Vaccination Is the Strongest Correlate of Cross-Reactive Antibody Responses in Migratory Bird Handlers. MBio, 2014, 5, e02107.	4.1	10
215	Pathobiological features of a novel, highly pathogenic avian influenza A(H5N8) virus. Emerging Microbes and Infections, 2014, 3, 1-13.	6.5	106
216	Effect of the PB2 and M Genes on the Replication of H6 Influenza Virus in Chickens. Influenza Research and Treatment, 2014, 2014, 1-6.	1.5	4

#	Article	IF	CITATIONS
217	Proteolytic enzymes in embryonated chicken eggs sustain the replication of egg-grown low-pathogenicity avian influenza viruses in cells in the absence of exogenous proteases. Journal of Virological Methods, 2014, 202, 28-33.	2.1	6
218	Mucosal Immune Responses Predict Clinical Outcomes during Influenza Infection Independently of Age and Viral Load. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 449-462.	5.6	152
219	Molecular characterization of avian influenza H5N1 virus in Egypt and the emergence of a novel endemic subclade. Journal of General Virology, 2014, 95, 1444-1463.	2.9	46
220	Barcoding Influenza Virus to Decode Transmission. Cell Host and Microbe, 2014, 16, 559-561.	11.0	5
221	Human H7N9 and H5N1 Influenza Viruses Differ in Induction of Cytokines and Tissue Tropism. Journal of Virology, 2014, 88, 12982-12991.	3.4	36
222	Respiratory transmission of an avian H3N8 influenza virus isolated from a harbour seal. Nature Communications, 2014, 5, 4791.	12.8	54
223	A single dose of whole inactivated H7N9 influenza vaccine confers protection from severe disease but not infection in ferrets. Vaccine, 2014, 32, 4571-4577.	3.8	30
224	Quantitative Proteomic Analysis of the Influenza A Virus Nonstructural Proteins NS1 and NS2 during Natural Cell Infection Identifies PACT as an NS1 Target Protein and Antiviral Host Factor. Journal of Virology, 2014, 88, 9038-9048.	3.4	50
225	Epistatic interactions between neuraminidase mutations facilitated the emergence of the oseltamivir-resistant H1N1 influenza viruses. Nature Communications, 2014, 5, 5029.	12.8	51
226	Analysis of Recombinant H7N9 Wild-Type and Mutant Viruses in Pigs Shows that the Q226L Mutation in HA Is Important for Transmission. Journal of Virology, 2014, 88, 8153-8165.	3.4	52
227	Prevalence of influenza A viruses in livestock and free-living waterfowl in Uganda. BMC Veterinary Research, 2014, 10, 50.	1.9	18
228	Genetic and antigenic evolution of H9N2 avian influenza viruses circulating in Egypt between 2011 and 2013. Archives of Virology, 2014, 159, 2861-2876.	2.1	58
229	Characterization of an H4N2 influenza virus from Quails with a multibasic motif in the hemagglutinin cleavage site. Virology, 2014, 468-470, 72-80.	2.4	14
230	WHO recommendations for the viruses used in the 2013–2014 Northern Hemisphere influenza vaccine: Epidemiology, antigenic and genetic characteristics of influenza A(H1N1)pdm09, A(H3N2) and B influenza viruses collected from October 2012 to January 2013. Vaccine, 2014, 32, 4713-4725.	3.8	102
231	Survival analysis of infected mice reveals pathogenic variations in the genome of avian H1N1 viruses. Scientific Reports, 2014, 4, 7455.	3.3	13
232	The genesis and source of the H7N9 influenza viruses causing human infections in China. Nature, 2013, 502, 241-244.	27.8	429
233	Mutation tryptophan to leucine at position 222 of haemagglutinin could facilitate H3N2 influenza A virus infection in dogs. Journal of General Virology, 2013, 94, 2599-2608.	2.9	38
234	Natural history of highly pathogenic avian influenza H5N1. Virus Research, 2013, 178, 63-77.	2.2	122

#	Article	IF	CITATIONS
235	Antigenic and Molecular Characterization of Avian Influenza A(H9N2) Viruses, Bangladesh. Emerging Infectious Diseases, 2013, 19, .	4.3	70
236	Influenza A Virus Migration and Persistence in North American Wild Birds. PLoS Pathogens, 2013, 9, e1003570.	4.7	83
237	Isolation of a Novel Swine Influenza Virus from Oklahoma in 2011 Which Is Distantly Related to Human Influenza C Viruses. PLoS Pathogens, 2013, 9, e1003176.	4.7	268
238	Active Surveillance for Influenza A Virus among Swine, Midwestern United States, 2009–2011. Emerging Infectious Diseases, 2013, 19, 954-960.	4.3	66
239	Surveillance of avian influenza viruses in Papua New Guinean poultry, June 2011 to April 2012. Western Pacific Surveillance and Response Journal: WPSAR, 2013, 4, 11-15.	0.6	5
240	Pathogenicity and Transmissibility of North American Triple Reassortant Swine Influenza A Viruses in Ferrets. PLoS Pathogens, 2012, 8, e1002791.	4.7	36
241	Characterization of a porcine intestinal epithelial cell line for influenza virus production. Journal of General Virology, 2012, 93, 2008-2016.	2.9	18
242	Virulence and transmissibility of H1N2 influenza virus in ferrets imply the continuing threat of triple-reassortant swine viruses. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15900-15905.	7.1	41
243	Cross-neutralization of influenza A viruses mediated by a single antibody loop. Nature, 2012, 489, 526-532.	27.8	434
244	Surveillance for Influenza Viruses in Poultry and Swine, West Africa, 2006–2008. Emerging Infectious Diseases, 2012, 18, 1446-1452.	4.3	37
245	Spread of Influenza Virus A (H5N1) Clade 2.3.2.1 to Bulgaria in Common Buzzards. Emerging Infectious Diseases, 2012, 18, 1596-1602.	4.3	31
246	Contribution of antibody production against neuraminidase to the protection afforded by influenza vaccines. Reviews in Medical Virology, 2012, 22, 267-279.	8.3	82
247	The neuraminidase and matrix genes of the 2009 pandemic influenza H1N1 virus cooperate functionally to facilitate efficient replication and transmissibility in pigs. Journal of General Virology, 2012, 93, 1261-1268.	2.9	36
248	The Epidemiological and Molecular Aspects of Influenza H5N1 Viruses at the Human-Animal Interface in Egypt. PLoS ONE, 2011, 6, e17730.	2.5	53
249	Feasibility of reconstructed ancestral H5N1 influenza viruses for cross-clade protective vaccine development. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 349-354.	7.1	52
250	A Contributing Role for Anti-Neuraminidase Antibodies on Immunity to Pandemic H1N1 2009 Influenza A Virus. PLoS ONE, 2011, 6, e26335.	2.5	55
251	Long-term evolution and transmission dynamics of swine influenza A virus. Nature, 2011, 473, 519-522.	27.8	219
252	Continuing Threat of Influenza (H5N1) Virus Circulation in Egypt. Emerging Infectious Diseases, 2011, 17, 2306-2308.	4.3	44

#	Article	IF	CITATIONS
253	Virulence and Genetic Compatibility of Polymerase Reassortant Viruses Derived from the Pandemic (H1N1) 2009 Influenza Virus and Circulating Influenza A Viruses. Journal of Virology, 2011, 85, 6275-6286.	3.4	51
254	H5N1 Influenza Virus Pathogenesis in Genetically Diverse Mice Is Mediated at the Level of Viral Load. MBio, 2011, 2, .	4.1	79
255	Hemagglutinin–neuraminidase balance confers respiratory-droplet transmissibility of the pandemic H1N1 influenza virus in ferrets. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14264-14269.	7.1	197
256	Live Bird Markets of Bangladesh: H9N2 Viruses and the Near Absence of Highly Pathogenic H5N1 Influenza. PLoS ONE, 2011, 6, e19311.	2.5	84
257	Evidence of Infection with H4 and H11 Avian Influenza Viruses among Lebanese Chicken Growers. PLoS ONE, 2011, 6, e26818.	2.5	55
258	Multiple Reassortment between Pandemic (H1N1) 2009 and Endemic Influenza Viruses in Pigs, United States. Emerging Infectious Diseases, 2011, 17, 1624-1629.	4.3	165
259	Coincident ruddy turnstone migration and horseshoe crab spawning creates an ecological â€~hot spot' for influenza viruses. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 3373-3379.	2.6	105
260	Protection from the 2009 H1N1 Pandemic Influenza by an Antibody from Combinatorial Survivor-Based Libraries. PLoS Pathogens, 2010, 6, e1000990.	4.7	63
261	Epidemiological, antigenic and genetic characteristics of seasonal influenza A(H1N1), A(H3N2) and B influenza viruses: Basis for the WHO recommendation on the composition of influenza vaccines for use in the 2009–2010 Northern Hemisphere season. Vaccine, 2010, 28, 1156-1167.	3.8	145
262	Viral reassortment and transmission after co-infection of pigs with classical H1N1 and triple-reassortant H3N2 swine influenza viruses. Journal of General Virology, 2010, 91, 2314-2321.	2.9	51
263	Inactivated Seasonal Influenza Vaccines Increase Serum Antibodies to the Neuraminidase of Pandemic Influenza A(H1N1) 2009 Virus in an Ageâ€Dependent Manner. Journal of Infectious Diseases, 2010, 202, 1634-1638.	4.0	45
264	Host Genetic Variation Affects Resistance to Infection with a Highly Pathogenic H5N1 Influenza A Virus in Mice. Journal of Virology, 2009, 83, 10417-10426.	3.4	169
265	The Polymerase Acidic Protein Gene of Influenza A Virus Contributes to Pathogenicity in a Mouse Model. Journal of Virology, 2009, 83, 12325-12335.	3.4	149
266	Diversity of influenza viruses in swine and the emergence of a novel human pandemic influenza A (H1N1). Influenza and Other Respiratory Viruses, 2009, 3, 207-213.	3.4	126
267	Influenza vaccines. Frontiers in Bioscience - Landmark, 2008, Volume, 4912.	3.0	11
268	Replication and Transmission of H9N2 Influenza Viruses in Ferrets: Evaluation of Pandemic Potential. PLoS ONE, 2008, 3, e2923.	2.5	248
269	Influenza in Migratory Birds and Evidence of Limited Intercontinental Virus Exchange. PLoS Pathogens, 2007, 3, e167.	4.7	241
270	Cross-Reactive Neuraminidase Antibodies Afford Partial Protection against H5N1 in Mice and Are Present in Unexposed Humans. PLoS Medicine, 2007, 4, e59.	8.4	249

#	Article	IF	CITATIONS
271	Hidden Epitopes Emerge in Secondary Influenza Virus-Specific CD8+ T Cell Reponses. Journal of Immunology, 2007, 178, 3091-3098.	0.8	50
272	Identification of H2N3 influenza A viruses from swine in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20949-20954.	7.1	198
273	Passive immunoprophylaxis and therapy with humanized monoclonal antibody specific for influenza A H5 hemagglutinin in mice. Respiratory Research, 2006, 7, 126.	3.6	103
274	Controversies in 21st century virology. Future Virology, 2006, 1, 263-268.	1.8	1
275	Molecular changes associated with adaptation of human influenza A virus in embryonated chicken eggs. Virology, 2006, 350, 137-145.	2.4	69
276	Immunization with Reverseâ€Genetics–Produced H5N1 Influenza Vaccine Protects Ferrets against Homologous and Heterologous Challenge. Journal of Infectious Diseases, 2006, 194, 159-167.	4.0	129
277	Genotype turnover by reassortment of replication complex genes from avian Influenza A virus. Journal of General Virology, 2006, 87, 2803-2815.	2.9	69
278	The polymerase complex genes contribute to the high virulence of the human H5N1 influenza virus isolate A/Vietnam/1203/04. Journal of Experimental Medicine, 2006, 203, 689-697.	8.5	316
279	Efficacy of H5 Influenza Vaccines Produced by Reverse Genetics in a Lethal Mouse Model. Journal of Infectious Diseases, 2005, 191, 1216-1220.	4.0	71
280	Role of specific hemagglutinin amino acids in the immunogenicity and protection of H5N1 influenza virus vaccines. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12915-12920.	7.1	115
281	Pathogenesis of Hong Kong H5N1 influenza virus NS gene reassortants in mice: the role of cytokines and B- and T-cell responses. Journal of General Virology, 2005, 86, 1121-1130.	2.9	155
282	Matrix Gene of Influenza A Viruses Isolated from Wild Aquatic Birds: Ecology and Emergence of Influenza A Viruses. Journal of Virology, 2004, 78, 8771-8779.	3.4	106
283	Generation of High-Yielding Influenza A Viruses in African Green Monkey Kidney (Vero) Cells by Reverse Genetics. Journal of Virology, 2004, 78, 1851-1857.	3.4	66
284	Molecular constraints to interspecies transmission of viral pathogens. Nature Medicine, 2004, 10, S77-S81.	30.7	102
285	Are We Ready for Pandemic Influenza?. Science, 2003, 302, 1519-1522.	12.6	586
286	Protection and compensation in the influenza virus-specific CD8+ T cell response. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7235-7240.	7.1	115
287	Eight-plasmid system for rapid generation of influenza virus vaccines. Vaccine, 2002, 20, 3165-3170.	3.8	374
288	Reassortment and Interspecies Transmission of North American H6N2 Influenza Viruses. Virology, 2002, 295, 44-53.	2.4	61

#	Article	IF	CITATIONS
289	Evolution of Swine H3N2 Influenza Viruses in the United States. Journal of Virology, 2000, 74, 8243-8251.	3.4	334