List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4499797/publications.pdf Version: 2024-02-01

		126907	189892
98	3,110	33	50
papers	citations	h-index	g-index
113	113	113	2886
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Cyclodextrins: a new and effective class of co-modulators for aqueous zirconium-MOF syntheses. CrystEngComm, 2021, 23, 2764-2772.	2.6	11
2	Selective Ruthenium atalyzed Hydroaminomethylation of Unsaturated Oleochemicals. European Journal of Lipid Science and Technology, 2020, 122, 1900131.	1.5	4
3	Oneâ€Pot Twoâ€Step Synthesis of Hydroxymethylated Unsaturated VHOSO and Its Application to the Synthesis of Biobased Polyurethanes. European Journal of Lipid Science and Technology, 2020, 122, 2000158.	1.5	6
4	Particle size effect in the mechanically assisted synthesis of β-cyclodextrin mesitylene sulfonate. Beilstein Journal of Organic Chemistry, 2020, 16, 2598-2606.	2.2	7
5	cRhâ€Catalyzed Hydroformylation of Divinylglycol: An Effective Way to Access 2,7â€Dioxadecalinâ€3,8â€diol. European Journal of Organic Chemistry, 2019, 2019, 4372-4376.	2.4	0
6	Hydrogenation of hydrophobic substrates catalyzed by gold nanoparticles embedded in Tetronic/cyclodextrin-based hydrogels. New Journal of Chemistry, 2019, 43, 9865-9872.	2.8	10
7	One pot synthesis of aminohydroxylated triglycerides under aqueous biphasic conditions. Catalysis Communications, 2019, 125, 37-42.	3.3	9
8	Pillar5arenes as Supramolecular Hosts in Aqueous Biphasic Rhodiumâ€Catalyzed Hydroformylation of Long Alkylâ€chain Alkenes. ChemCatChem, 2018, 10, 5306-5313.	3.7	11
9	Amines as effective ligands in iridium-catalyzed decarbonylative dehydration of biosourced substrates. Catalysis Science and Technology, 2018, 8, 3948-3953.	4.1	8
10	Hydroaminomethylation of oleochemicals: A comprehensive overview. European Journal of Lipid Science and Technology, 2018, 120, 1700190.	1.5	13
11	Catalysis in Cyclodextrin-Based Unconventional Reaction Media: Recent Developments and Future Opportunities. ACS Sustainable Chemistry and Engineering, 2017, 5, 3598-3606.	6.7	46
12	A hydroaminomethylation/hydrohydroxymethylation sequence for the one pot synthesis of aminohydroxytriglycerides. Green Chemistry, 2017, 19, 1940-1948.	9.0	13
13	Water-soluble phosphane-substituted cyclodextrin as an effective bifunctional additive in hydroformylation of higher olefins. Catalysis Science and Technology, 2017, 7, 3823-3830.	4.1	20
14	Hydroformylation of Alkenes in a Planetary Ball Mill: From Additiveâ€Controlled Reactivity to Supramolecular Control of Regioselectivity. Angewandte Chemie - International Edition, 2017, 56, 10564-10568.	13.8	25
15	Hydroformylation of Alkenes in a Planetary Ball Mill: From Additiveâ€Controlled Reactivity to Supramolecular Control of Regioselectivity. Angewandte Chemie, 2017, 129, 10700-10704.	2.0	11
16	Tetronics/cyclodextrin-based hydrogels as catalyst-containing media for the hydroformylation of higher olefins. Catalysis Science and Technology, 2017, 7, 114-123.	4.1	21
17	Unconventional Approaches Involving Cyclodextrin-Based, Self-Assembly-Driven Processes for the Conversion of Organic Substrates in Aqueous Biphasic Catalysis. Catalysts, 2017, 7, 173.	3.5	37
18	Cyclodextrins as effective additives in AuNP-catalyzed reduction of nitrobenzene derivatives in a ball-mill. Green Chemistry, 2016, 18, 5500-5509.	9.0	58

#	Article	IF	CITATIONS
19	Hydroformylation of vegetable oils: More than 50 years of technical innovation, successful research, and development. European Journal of Lipid Science and Technology, 2016, 118, 26-35.	1.5	38
20	Greener Paal–Knorr Pyrrole Synthesis by Mechanical Activation. European Journal of Organic Chemistry, 2016, 2016, 31-35.	2.4	41
21	Cyclodextrins as Porous Material for Catalysis. , 2016, , 15-42.		4
22	Conjugated Dienyl Derivatives by Green Bisallylic Substitution: Synthetic and Mechanistic Insight. ChemCatChem, 2016, 8, 2321-2328.	3.7	6
23	Rhodium-catalyzed one pot synthesis of hydroxymethylated triglycerides. Green Chemistry, 2016, 18, 6687-6694.	9.0	32
24	A self-emulsifying catalytic system for the aqueous biphasic hydroformylation of triglycerides. Catalysis Science and Technology, 2016, 6, 3064-3073.	4.1	16
25	Recent developments in cyclodextrinâ€mediated aqueous biphasic hydroformylation and tsuji–trost reactions. Applied Organometallic Chemistry, 2015, 29, 580-587.	3.5	26
26	Cyclodextrins Modified by Metal-Coordinating Groups for Aqueous Organometallic Catalysis: What Remains to be Done?. Current Organocatalysis, 2015, 3, 24-31.	0.5	14
27	Selective Secondary Face Modification of Cyclodextrins by Mechanosynthesis. Journal of Organic Chemistry, 2015, 80, 6259-6266.	3.2	39
28	Thermoresponsive self-assembled cyclodextrin-end-decorated PNIPAM for aqueous catalysis. Chemical Communications, 2015, 51, 2328-2330.	4.1	13
29	Homogenous catalytic hydrogenation of bicarbonate with water soluble aryl phosphine ligands. Inorganica Chimica Acta, 2015, 431, 132-138.	2.4	6
30	Cyclodextrins as first and second sphere ligands for Rh(l) complexes of lower-rim PTA derivatives for use as catalysts in aqueous phase hydrogenation. Catalysis Communications, 2015, 63, 74-78.	3.3	9
31	Cyclodextrin-based PNN supramolecular assemblies: a new class of pincer-type ligands for aqueous organometallic catalysis. Dalton Transactions, 2015, 44, 13504-13512.	3.3	11
32	Supramolecular Emulsifiers in Biphasic Catalysis: The Substrate Drives Its Own Transformation. ACS Catalysis, 2015, 5, 4288-4292.	11.2	18
33	Catalytic Decarbonylation of Biosourced Substrates. ChemSusChem, 2015, 8, 1585-1592.	6.8	25
34	Cyclodextrin-grafted polymers functionalized with phosphanes: a new tool for aqueous organometallic catalysis. Beilstein Journal of Organic Chemistry, 2014, 10, 2642-2648.	2.2	10
35	Multifunctional cyclodextrin-based N,N-bidentate ligands for aqueous Heck arylation. Applied Catalysis A: General, 2014, 479, 1-8.	4.3	13
36	Limits of the Inversion Phenomenon in Triazolylâ€6ubstituted β yclodextrin Dimers. European Journal of Organic Chemistry, 2014, 2014, 1547-1556.	2.4	19

#	Article	IF	CITATIONS
37	Hydrogen Production by Selective Dehydrogenation of HCOOH Catalyzed by Ru-Biaryl Sulfonated Phosphines in Aqueous Solution. ACS Catalysis, 2014, 4, 3002-3012.	11.2	68
38	Recent breakthroughs in aqueous cyclodextrin-assisted supramolecular catalysis. Catalysis Science and Technology, 2014, 4, 1899.	4.1	100
39	Synergetic Effect of Randomly Methylated β-Cyclodextrin and a Supramolecular Hydrogel in Rh-Catalyzed Hydroformylation of Higher Olefins. ACS Catalysis, 2014, 4, 2342-2346.	11.2	32
40	Hydroformylation of vegetable oils and the potential use of hydroformylated fatty acids. Lipid Technology, 2013, 25, 175-178.	0.3	20
41	β-Cyclodextrins grafted with chiral amino acids: A promising supramolecular stabilizer of nanoparticles for asymmetric hydrogenation?. Applied Catalysis A: General, 2013, 467, 497-503.	4.3	15
42	Thermoresponsive Hydrogels in Catalysis. ACS Catalysis, 2013, 3, 1006-1010.	11.2	87
43	Pickering Emulsions Based on Supramolecular Hydrogels: Application to Higher Olefins' Hydroformylation. ACS Catalysis, 2013, 3, 1618-1621.	11.2	64
44	Hydroformylation in Aqueous Biphasic Media Assisted by Molecular Receptors. Topics in Current Chemistry, 2013, 342, 49-78.	4.0	8
45	The Role of Metals and Ligands in Organic Hydroformylation. Topics in Current Chemistry, 2013, 342, 1-47.	4.0	22
46	About the Use of Rhodium Nanoparticles in Hydrogenation and Hydroformylation Reactions. Current Organic Chemistry, 2013, 17, 364-399.	1.6	47
47	Lower- and upper-rim-modified derivatives of 1,3,5-triaza-7-phosphaadamantane: Coordination chemistry and applications in catalytic reactions in water. Pure and Applied Chemistry, 2012, 85, 385-396.	1.9	23
48	Novel Strategy for the Bis-Butenolide Synthesis via Ring-Closing Metathesis. Synthesis, 2012, 44, 137-143.	2.3	6
49	Water-soluble diphosphadiazacyclooctanes as ligands for aqueous organometallic catalysis. Catalysis Communications, 2012, 29, 77-81.	3.3	10
50	Cooperativity in Aqueous Organometallic Catalysis: Contribution of Cyclodextrin-Substituted Polymers. ACS Catalysis, 2012, 2, 1417-1420.	11.2	42
51	Rhodiumâ€catalyzed hydroformylation of unsaturated fatty esters in aqueous media assisted by activated carbon. European Journal of Lipid Science and Technology, 2012, 114, 1439-1446.	1.5	29
52	Impact of cyclodextrins on the behavior of amphiphilic ligands in aqueous organometallic catalysis. Beilstein Journal of Organic Chemistry, 2012, 8, 1479-1484.	2.2	19
53	Functionalized Cyclodextrins as First and Second Coordination Sphere Ligands for Aqueous Organometallic Catalysis. European Journal of Inorganic Chemistry, 2012, 2012, 1571-1578.	2.0	44
54	Cyclodextrin/Amphiphilic Phosphane Mixed Systems and their Applications in Aqueous Organometallic Catalysis. Advanced Synthesis and Catalysis, 2012, 354, 1337-1346.	4.3	30

#	Article	IF	CITATIONS
55	Nanoparticleâ€Based Catalysis using Supramolecular Hydrogels. Advanced Synthesis and Catalysis, 2012, 354, 1269-1272.	4.3	40
56	Supramolecularly controlled surface activity of an amphiphilic ligand. Application to aqueous biphasic hydroformylation of higher olefins. Catalysis Science and Technology, 2011, 1, 1347.	4.1	31
57	Using click chemistry to access mono- and ditopic β-cyclodextrin hosts substituted by chiral amino acids. Carbohydrate Research, 2011, 346, 210-218.	2.3	18
58	Unusual Inversion Phenomenon of β yclodextrin Dimers in Water. Chemistry - A European Journal, 2011, 17, 3949-3955.	3.3	37
59	Cyclodextrins and their applications in aqueous-phase metal-catalyzed reactions. Comptes Rendus Chimie, 2011, 14, 149-166.	0.5	92
60	Ditopic Cyclodextrinâ€Based Receptors: New Perspectives in Aqueous Organometallic Catalysis. Advanced Synthesis and Catalysis, 2010, 352, 1467-1475.	4.3	12
61	Cyclodextrins as Mass Transfer Additives in Aqueous Organometallic Catalysis. Current Organic Chemistry, 2010, 14, 1296-1307.	1.6	41
62	Cyclodextrin-Based SupramolecularP,NBidentate Ligands and their Platinum and Rhodium Complexes. Organometallics, 2010, 29, 6668-6674.	2.3	22
63	Amphiphilic photo-isomerisable phosphanes for aqueous organometallic catalysis. Chemical Communications, 2010, 46, 7813.	4.1	23
64	Aqueous rhodium-catalyzed hydroformylation of 1-decene in the presence of randomly methylated β-cyclodextrin and 1,3,5-triaza-7-phosphaadamantane derivatives. Applied Catalysis A: General, 2009, 362, 62-66.	4.3	44
65	Chemically Modified Cyclodextrins: An Attractive Class of Supramolecular Hosts for the Development of Aqueous Biphasic Catalytic Processes. Sustainability, 2009, 1, 924-945.	3.2	55
66	A Propertyâ€Matched Waterâ€Soluble Analogue of the Benchmark Ligand PPh ₃ . ChemSusChem, 2008, 1, 631-636.	6.8	19
67	Easily Accessible Mono―and Polytopic Âβ yclodextrin Hosts by Click Chemistry. European Journal of Organic Chemistry, 2008, 2008, 5723-5730.	2.4	35
68	Click chemistry as an efficient tool to access β-cyclodextrin dimers. Tetrahedron, 2008, 64, 7159-7163.	1.9	44
69	Fine tuning of sulfoalkylated cyclodextrin structures to improve their mass-transfer properties in an aqueous biphasic hydroformylation reaction. Journal of Molecular Catalysis A, 2008, 286, 11-20.	4.8	26
70	Chemically modified cyclodextrins adsorbed on Pd/C particles: New opportunities to generate highly chemo- and stereoselective catalysts for Heck reaction. Catalysis Communications, 2008, 9, 1346-1351.	3.3	46
71	Rhodium-Catalyzed Hydroformylation Promoted by Modified Cyclodextrins:Current Scope and Future Developments. Current Organic Synthesis, 2008, 5, 162-172.	1.3	50

72 Organometallic Inclusion and Intercalation Chemistry. , 2007, , 781-835.

1

#	Article	IF	CITATIONS
73	Self-Assembled Supramolecular Bidentate Ligands for Aqueous Organometallic Catalysis. Angewandte Chemie - International Edition, 2007, 46, 3040-3042.	13.8	53
74	A versatile liposome/cyclodextrin supramolecular carrier for drug delivery through the blood-brain barrier. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 57, 567-572.	1.6	12
75	Cyclodextrins as Supramolecular Hosts for Organometallic Complexes. Chemical Reviews, 2006, 106, 767-781.	47.7	394
76	Unexpected Multifunctional Effects of Methylated Cyclodextrins in a Palladium Charcoal-Catalyzed Suzukiâ^'Miyaura Reaction. Organic Letters, 2006, 8, 4823-4826.	4.6	58
77	How cyclodextrins can mask their toxic effect on the blood–brain barrier. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 1784-1787.	2.2	11
78	Supramolecular Trapping of Phosphanes by Cyclodextrins: A General Approach to Generate Phosphane Coordinatively Unsaturated Organometallic Complexes. European Journal of Inorganic Chemistry, 2006, 2006, 1611-1619.	2.0	14
79	Heptakis(2,3-di-O-methyl-6-O-sulfopropyl)-β-cyclodextrin: A Genuine Supramolecular Carrier for Aqueous Organometallic Catalysis. Advanced Synthesis and Catalysis, 2006, 348, 379-386.	4.3	38
80	Water-Soluble Triphenylphosphane-3,3′,3′′-tricarboxylate (m-TPPTC) Ligand and Methylated Cyclodextrins: A New Combination for Biphasic Rhodium-Catalyzed Hydroformylation of Higher Olefins. Advanced Synthesis and Catalysis, 2006, 348, 1547-1552.	4.3	30
81	Improvement of the dopant compatibility in a chiral LC mixture by structural modification of lanthanide complexes. Liquid Crystals, 2006, 33, 921-927.	2.2	3
82	Substrate-selective aqueous organometallic catalysis. How small water-soluble organic molecules enhance the supramolecular discrimination. Tetrahedron, 2005, 61, 4811-4817.	1.9	21
83	Adamantoylated monosaccharides: new compounds for modification of the properties of cyclodextrin-containing materials. Carbohydrate Research, 2005, 340, 1461-1468.	2.3	10
84	Sulfobutyl Ether-β-Cyclodextrins: Promising Supramolecular Carriers for Aqueous Organometallic Catalysis. Advanced Synthesis and Catalysis, 2005, 347, 1301-1307.	4.3	35
85	Evidence of a self-inclusion phenomenon for a new class of mono-substituted alkylammonium-β-cyclodextrins. Organic and Biomolecular Chemistry, 2005, 3, 1129-1133.	2.8	17
86	Sulfonated Xantphos Ligand and Methylated Cyclodextrin:Â A Winning Combination for Rhodium-Catalyzed Hydroformylation of Higher Olefins in Aqueous Medium. Organometallics, 2005, 24, 2070-2075.	2.3	66
87	Substrate-selective aqueous organometallic catalysis. How size and chemical modification of cyclodextrin influence the substrate selectivity. Tetrahedron, 2004, 60, 6487-6493.	1.9	39
88	Cleavage of water-insoluble alkylallylcarbonates catalysed by a palladium/TPPTS/cyclodextrin system: effect of phosphine/cyclodextrin interactions on the reaction rate. Journal of Molecular Catalysis A, 2004, 215, 23-32.	4.8	35
89	Cyclodextrins or Calixarenes: What is the Best Mass Transfer Promoter for Suzuki Cross-Coupling Reactions in Water?. Advanced Synthesis and Catalysis, 2004, 346, 83-89.	4.3	53
90	High-Pressure31P{1H}â€NMR Studies of RhH(CO)(TPPTS)3 in the Presence of Methylated Cyclodextrins: New Light on Rhodium-Catalyzed Hydroformylation Reaction Assisted by Cyclodextrins. Advanced Synthesis and Catalysis, 2004, 346, 425-431.	4.3	59

#	Article	IF	CITATIONS
91	Methylated-β-cyclodextrins: useful discriminating tools for substrate-selective reactions in aqueous organometallic catalysis. Catalysis Communications, 2004, 5, 265-270.	3.3	21
92	Alignment of a nematic liquid crystal using substituted calixarene Langmuir-Blodgett films. Liquid Crystals, 2003, 30, 463-469.	2.2	6
93	New lanthanide-cholesteryl ester complexes: spectroscopic evidence of their non-mesogenic character. Magnetic Resonance in Chemistry, 2001, 39, 15-22.	1.9	6
94	Optically Active Homogeneous Mixtures of Cholesteric Liquid Crystals and a New Coordination Compound: Eu(Thenoyltrifluoroacetonate)3. (Cholesteryl Tetradecanoate or Nonanoate). Molecular Crystals and Liquid Crystals, 1999, 330, 143-150.	0.3	19
95	The aminophosphine-phosphinites and related ligands: synthesis, coordination chemistry and enantioselective catalysis1Dedicated to the memory of Professor Francis Petit1. Coordination Chemistry Reviews, 1998, 178-180, 1615-1645.	18.8	96
96	Enantioselective hydrogenation of α- and β-functionalized ketones by Ru(II){AMPP} catalysts. Tetrahedron: Asymmetry, 1997, 8, 2881-2884.	1.8	13
97	Asymmetric catalytic hydrogenation of α-ketoesters using new chiral Ru(II)(AMPP) complexes. Tetrahedron: Asymmetry, 1995, 6, 11-14.	1.8	14
98	Synthesis of new chiral arene ruthenium(II) aminophosphinephosphinite complexes and use in asymmetric hydrogenation of an activated keto compound. Tetrahedron: Asymmetry, 1994, 5, 515-518.	1.8	18