

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4499583/publications.pdf

YE TAO

#	Article	IF	CITATIONS
1	Thermally Activated Delayed Fluorescence Materials Towards the Breakthrough of Organoelectronics. Advanced Materials, 2014, 26, 7931-7958.	21.0	1,617
2	Stabilizing triplet excited states for ultralong organic phosphorescence. Nature Materials, 2015, 14, 685-690.	27.5	1,404
3	Ultralong Phosphorescence of Waterâ€Soluble Organic Nanoparticles for In Vivo Afterglow Imaging. Advanced Materials, 2017, 29, 1606665.	21.0	419
4	Stimuliâ€Responsive Circularly Polarized Organic Ultralong Room Temperature Phosphorescence. Angewandte Chemie - International Edition, 2020, 59, 4756-4762.	13.8	198
5	Thermally activated triplet exciton release for highly efficient tri-mode organic afterglow. Nature Communications, 2020, 11, 842.	12.8	194
6	Recent Advances on Host–Guest Material Systems toward Organic Room Temperature Phosphorescence. Small, 2022, 18, e2104073.	10.0	170
7	Resonanceâ€Activated Spinâ€Flipping for Efficient Organic Ultralong Roomâ€Temperature Phosphorescence. Advanced Materials, 2018, 30, e1803856.	21.0	161
8	Understanding the Control of Singlet-Triplet Splitting for Organic Exciton Manipulating: A Combined Theoretical and Experimental Approach. Scientific Reports, 2015, 5, 10923.	3.3	151
9	Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection. Nature Communications, 2018, 9, 4299.	12.8	151
10	Invoking ultralong room temperature phosphorescence of purely organic compounds through H-aggregation engineering. Materials Horizons, 2019, 6, 1259-1264.	12.2	131
11	High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection. Nature Nanotechnology, 2020, 15, 675-682.	31.5	129
12	On-demand modulating afterglow color of water-soluble polymers through phosphorescence FRET for multicolor security printing. Science Advances, 2022, 8, eabk2925.	10.3	101
13	Single-component color-tunable circularly polarized organic afterglow through chiral clusterization. Nature Communications, 2022, 13, 429.	12.8	80
14	Dynamically Adaptive Characteristics of Resonance Variation for Selectively Enhancing Electrical Performance of Organic Semiconductors. Angewandte Chemie - International Edition, 2013, 52, 10491-10495.	13.8	78
15	Direct population of triplet excited states through singlet–triplet transition for visible-light excitable organic afterglow. Chemical Science, 2019, 10, 5031-5038.	7.4	77
16	Achieving Optimal Self-Adaptivity for Dynamic Tuning of Organic Semiconductors through Resonance Engineering. Journal of the American Chemical Society, 2016, 138, 9655-9662.	13.7	71
17	A Solutionâ€Processed Resonance Host for Highly Efficient Electrophosphorescent Devices with Extremely Low Efficiency Rollâ€off. Advanced Materials, 2015, 27, 6939-6944.	21.0	68
18	Resonance-Induced Stimuli-Responsive Capacity Modulation of Organic Ultralong Room Temperature Phosphorescence. Journal of the American Chemical Society, 2022, 144, 6946-6953.	13.7	68

Υε Ταο

#	Article	IF	CITATIONS
19	Exceptional Blueshifted and Enhanced Aggregationâ€Induced Emission of Conjugated Asymmetric Triazines and Their Applications in Superamplified Detection of Explosives. Chemistry - A European Journal, 2012, 18, 15655-15661.	3.3	60
20	Efficient synthesis of ï€-extended phenazasilines for optical and electronic applications. Chemical Communications, 2014, 50, 15760-15763.	4.1	41
21	Modulating Triâ€Mode Emission for Single omponent White Organic Afterglow. Angewandte Chemie - International Edition, 2021, 60, 24984-24990.	13.8	41
22	Organic Resonance Materials: Molecular Design, Photophysical Properties, and Optoelectronic Applications. Journal of Physical Chemistry Letters, 2020, 11, 7739-7754.	4.6	39
23	Stimuliâ€Responsive Circularly Polarized Organic Ultralong Room Temperature Phosphorescence. Angewandte Chemie, 2020, 132, 4786-4792.	2.0	37
24	Computational design and selection of optimal building blocks and linking topologies for construction of high-performance host materials. RSC Advances, 2012, 2, 7860.	3.6	30
25	Fluorine-induced aggregate-interlocking for color-tunable organic afterglow with a simultaneously improved efficiency and lifetime. Chemical Science, 2021, 12, 3580-3586.	7.4	30
26	Heteroatom-Bridged Benzothiazolyls for Organic Solar Cells: A Theoretical Study. Journal of Physical Chemistry B, 2015, 119, 583-591.	2.6	28
27	Synthesis and characterization of heteroatom substituted carbazole derivatives: potential host materials for phosphorescent organic light-emitting diodes. New Journal of Chemistry, 2013, 37, 977.	2.8	27
28	Selectively Modulating Triplet Exciton Formation in Host Materials for Highly Efficient Blue Electrophosphorescence. ACS Applied Materials & Interfaces, 2016, 8, 7274-7282.	8.0	26
29	X-ray excited ultralong room-temperature phosphorescence for organic afterglow scintillators. Chemical Communications, 2020, 56, 13559-13562.	4.1	25
30	Starâ€Shaped Boronâ€Containing Asymmetric Host Materials for Solutionâ€Processable Phosphorescent Organic Lightâ€Emitting Diodes. Advanced Science, 2018, 5, 1800292.	11.2	22
31	Resonanceâ€Mediated Dynamic Modulation of Perovskite Crystallization for Efficient and Stable Solar Cells. Advanced Materials, 2022, 34, e2107111.	21.0	21
32	Resonance-driven dynamically bipolar organic semiconductors for high-performance optoelectronic applications. Materials Horizons, 2020, 7, 3298-3304.	12.2	20
33	A biocompatible photosensitizer with a high intersystem crossing efficiency for precise two-photon photodynamic therapy. Materials Horizons, 2022, 9, 1283-1292.	12.2	20
34	Direct silicon–nitrogen bonded host materials with enhanced σ–π conjugation for blue phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2016, 4, 10047-10052.	5.5	18
35	Bright monolayer tungsten disulfide <i>via</i> exciton and trion chemical modulations. Nanoscale, 2018, 10, 6294-6299.	5.6	18
36	Intermolecular locking design of red thermally activated delayed fluorescence molecules for high-performance solution-processed organic light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 2291-2297.	5.5	18

Υε Ταο

#	Article	IF	CITATIONS
37	Simultaneously Enhancing Efficiency and Stability of Perovskite Solar Cells Through Crystal Crossâ€Linking Using Fluorophenylboronic Acid. Small, 2021, 17, e2102090.	10.0	15
38	Evoking non-bonding S-ï€ interaction by aryl phosphine sulfide for selectively enhanced electronic property of organic semiconductors. Chemical Engineering Journal, 2020, 380, 122562.	12.7	14
39	Carbazole/oligofluorene end-capped hexanes: solution-processable host materials for phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 4442-4447.	5.5	13
40	Resonance hosts for high efficiency solution-processed blue and white electrophosphorescent devices. Science China Chemistry, 2020, 63, 1645-1651.	8.2	12
41	Surface group-modified MXene nano-flake doping of monolayer tungsten disulfides. Nanoscale Advances, 2019, 1, 4783-4789.	4.6	11
42	The structural, electronic, and optical properties of ladder-type polyheterofluorenes: a theoretical study. Journal of Molecular Modeling, 2012, 18, 4929-4939.	1.8	10
43	Cost-effective synthesis of carbazole/triphenylsilyl host materials with multiple σ-π conjugation for blue phosphorescent organic light-emitting diodes. Dyes and Pigments, 2018, 151, 187-193.	3.7	10
44	Highly Efficient Ultrathin Fluorescent OLEDs through Synergistic Sensitization Effects of Phosphor and Exciplex. ACS Applied Electronic Materials, 2020, 2, 3704-3710.	4.3	10
45	Modulating Triâ€Mode Emission for Single omponent White Organic Afterglow. Angewandte Chemie, 2021, 133, 25188-25194.	2.0	10
46	V-shaped triazine host featuring intramolecular non-covalent interaction for highly efficient white electroluminescent devices. Chemical Engineering Journal, 2021, 425, 131487.	12.7	10
47	Near-Infrared-Excitable Organic Ultralong Phosphorescence through Multiphoton Absorption. Research, 2020, 2020, 2904928.	5.7	10
48	Tuning Intramolecular Conformation and Packing Mode of Host Materials through Noncovalent Interactions for High-Efficiency Blue Electrophosphorescence. ACS Omega, 2019, 4, 9129-9134.	3.5	9
49	Multiple σ–π Conjugated Molecules with Selectively Enhanced Electrical Performance for Efficient Solutionâ€Processed Blue Electrophosphorescence. Advanced Optical Materials, 2019, 7, 1901124.	7.3	7
50	Modulation of singlet and triplet excited states through $\ddot{l}f$ spacers in ternary 1,3,5-triazines. RSC Advances, 2013, 3, 13782.	3.6	6
51	Constructing Donor-Resonance-Donor Molecules for Acceptor-Free Bipolar Organic Semiconductors. Research, 2021, 2021, .	5.7	6
52	Fluorescence Materials: Thermally Activated Delayed Fluorescence Materials Towards the Breakthrough of Organoelectronics (Adv. Mater. 47/2014). Advanced Materials, 2014, 26, 7930-7930.	21.0	5
53	Reply to: Detectivities of WS2/HfS2 heterojunctions. Nature Nanotechnology, 2022, 17, 220-221.	31.5	5
54	High Triplet Energy Phosphine Sulfide Host Materials with Selectively Modulated Electrical Performance for Blue Electrophosphorescence. ACS Sustainable Chemistry and Engineering, 2019, 7, 15723-15728.	6.7	4

Υε Ταο

			-
#	Article	IF	CITATIONS
55	Heteroatom-bridged heterofluorenes: a theoretical study on molecular structures and optoelectronic properties. Physical Chemistry Chemical Physics, 2020, 22, 3675-3682.	2.8	4
56	Evoking Synergetic Effect of Dual Thermally Activated Delayed Fluorescent Hosts for High-Efficiency Sensitized Fluorescent Organic Light-Emitting Diodes. Journal of Physical Chemistry C, 2020, 124, 1836-1843.	3.1	3
57	Asymmetric Thermally Activated Delayed Fluorescence Materials With Aggregation-Induced Emission for High-Efficiency Organic Light-Emitting Diodes. Frontiers in Chemistry, 2020, 8, 49.	3.6	3
58	Achieving Balanced Electrical Performance of Host Material through Dual N–Pâ•O Resonance Linkage for Efficient Electroluminescence. ACS Applied Materials & Interfaces, 2022, 14, 25834-25841.	8.0	2
59	Organic Nanoparticles: Ultralong Phosphorescence of Waterâ€Soluble Organic Nanoparticles for In Vivo Afterglow Imaging (Adv. Mater. 33/2017). Advanced Materials, 2017, 29, .	21.0	1
60	Purely Organic Phosphorescence: Resonance-Activated Spin-Flipping for Efficient Organic Ultralong Room-Temperature Phosphorescence (Adv. Mater. 44/2018). Advanced Materials, 2018, 30, 1870335.	21.0	1
61	Phosphine Sulfide-Based Bipolar Host Materials for Blue Phosphorescent Organic Light-Emitting Diodes. Molecules, 2021, 26, 4079.	3.8	1