Seong H Chow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4498609/publications.pdf

Version: 2024-02-01

257450 276875 1,937 43 24 41 h-index citations g-index papers 43 43 43 3151 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A polytherapy based approach to combat antimicrobial resistance using cubosomes. Nature Communications, 2022, 13, 343.	12.8	31
2	Interferon- \hat{l}^3 primes macrophages for pathogen ligand-induced killing via a caspase-8 and mitochondrial cell death pathway. Immunity, 2022, 55, 423-441.e9.	14.3	61
3	Correlative proteomics identify the key roles of stress tolerance strategies in Acinetobacter baumannii in response to polymyxin and human macrophages. PLoS Pathogens, 2022, 18, e1010308.	4.7	6
4	Mpeg1 is not essential for antibacterial or antiviral immunity, but is implicated in antigen presentation. Immunology and Cell Biology, 2022, 100, 529-546.	2.3	4
5	Bacterial outer membrane vesicles and host cell death signaling. Trends in Microbiology, 2021, 29, 1106-1116.	7.7	34
6	Targeted delivery of LM22A-4 by cubosomes protects retinal ganglion cells in an experimental glaucoma model. Acta Biomaterialia, 2021, 126, 433-444.	8.3	12
7	Polymyxin-Induced Cell Death of Human Macrophage-Like THP-1 and Neutrophil-Like HL-60 Cells Associated with the Activation of Apoptotic Pathways. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	5
8	Metabolic competition between host and pathogen dictates inflammasome responses to fungal infection. PLoS Pathogens, 2020, 16, e1008695.	4.7	28
9	Mitochondrial dysfunction caused by outer membrane vesicles from Gram-negative bacteria activates intrinsic apoptosis and inflammation. Nature Microbiology, 2020, 5, 1418-1427.	13.3	105
10	Targeting NLRP3 and Staphylococcal pore-forming toxin receptors in human-induced pluripotent stem cell-derived macrophages. Journal of Leukocyte Biology, 2020, 108, 967-981.	3.3	19
11	Central metabolic interactions of immune cells and microbes: prospects for defeating infections. EMBO Reports, 2019, 20, e47995.	4.5	47
12	Efficacy and Safety of Injectable and Oral Antibiotics in Treating Gonorrhea: A Systematic Review and Network Meta-Analysis. Journal of Clinical Medicine, 2019, 8, 2182.	2.4	12
13	Targeting of RNA Polymerase II by a nuclear <i>Legionella pneumophila</i> Dot/Icm effector SnpL. Cellular Microbiology, 2018, 20, e12852.	2.1	21
14	<i>Leishmania mexicana</i> can utilize amino acids as major carbon sources in macrophages but not in animal models. Molecular Microbiology, 2018, 108, 143-158.	2.5	31
15	Glucose Homeostasis Is Important for Immune Cell Viability during Candida Challenge and Host Survival of Systemic Fungal Infection. Cell Metabolism, 2018, 27, 988-1006.e7.	16.2	162
16	Polymyxin-Induced Lipid A Deacylation in <i>Pseudomonas aeruginosa</i> Perturbs Polymyxin Penetration and Confers High-Level Resistance. ACS Chemical Biology, 2018, 13, 121-130.	3.4	59
17	Annexin V-containing cubosomes for targeted early detection of apoptosis in degenerative retinal tissue. Journal of Materials Chemistry B, 2018, 6, 7652-7661.	5.8	15
18	The WD40 Protein BamB Mediates Coupling of BAM Complexes into Assembly Precincts in the Bacterial Outer Membrane. Cell Reports, 2018, 23, 2782-2794.	6.4	72

#	Article	IF	CITATIONS
19	Targeting apoptosis pathways in infections. Journal of Leukocyte Biology, 2018, 103, 275-285.	3.3	35
20	Outer membrane vesicles from Neisseria gonorrhoeae target PorB to mitochondria and induce apoptosis. PLoS Pathogens, 2018, 14, e1006945.	4.7	105
21	SecretEPDB: a comprehensive web-based resource for secreted effector proteins of the bacterial types III, IV and VI secretion systems. Scientific Reports, 2017, 7, 41031.	3.3	38
22	Towards re-purposing BH3-mimetics in <i>Legionella</i> and viral infections. Expert Review of Anti-Infective Therapy, 2017, 15, 1071-1073.	4.4	0
23	Legionella pneumophila Strain 130b Evades Macrophage Cell Death Independent of the Effector SidF in the Absence of Flagellin. Frontiers in Cellular and Infection Microbiology, 2017, 7, 35.	3.9	18
24	Intraocular Pressure Induced Retinal Changes Identified Using Synchrotron Infrared Microscopy. PLoS ONE, 2016, 11, e0164035.	2.5	5
25	The Endoplasmic Reticulum-Mitochondrion Tether ERMES Orchestrates Fungal Immune Evasion, Illuminating Inflammasome Responses to Hyphal Signals. MSphere, 2016, 1 , .	2.9	39
26	Macrophage cell death in microbial infections. Cellular Microbiology, 2016, 18, 466-474.	2.1	37
27	Eliminating Legionella by inhibiting BCL-XL to induce macrophage apoptosis. Nature Microbiology, 2016, 1, 15034.	13.3	75
28	<i>Legionella pneumophila</i> S1P-lyase targets host sphingolipid metabolism and restrains autophagy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1901-1906.	7.1	115
29	Analysis of the Relative Contribution of Phagocytosis, <scp>LC</scp> 3â€Associated Phagocytosis, and Canonical Autophagy During <i>Helicobacter pylori</i> Infection of Macrophages. Helicobacter, 2015, 20, 449-459.	3.5	15
30	Intracellular Survival of Leishmania major Depends on Uptake and Degradation of Extracellular Matrix Glycosaminoglycans by Macrophages. PLoS Pathogens, 2015, 11, e1005136.	4.7	34
31	Defining the structural characteristics of annexin V binding to a mimetic apoptotic membrane. European Biophysics Journal, 2015, 44, 697-708.	2.2	12
32	Programmed cell death in <i>Legionella</i> infection. Future Microbiology, 2014, 9, 107-118.	2.0	12
33	Golgi-Located NTPDase1 of Leishmania major Is Required for Lipophosphoglycan Elongation and Normal Lesion Development whereas Secreted NTPDase2 Is Dispensable for Virulence. PLoS Neglected Tropical Diseases, 2014, 8, e3402.	3.0	16
34	Microbial Egress: A Hitchhiker's Guide to Freedom. PLoS Pathogens, 2014, 10, e1004201.	4.7	19
35	Calcineurin is required for <i>Leishmania major</i> stress response pathways and for virulence in the mammalian host. Molecular Microbiology, 2011, 80, 471-480.	2.5	44
36	Intracellular growth and pathogenesis of <i>Leishmania</i> parasites. Essays in Biochemistry, 2011, 51, 81-95.	4.7	40

SEONG H CHOW

#	Article	IF	CITATIONS
37	Evidence That Intracellular Stages of Leishmania major Utilize Amino Sugars as a Major Carbon Source. PLoS Pathogens, 2010, 6, e1001245.	4.7	67
38	The Leishmania-macrophage interaction: a metabolic perspective. Cellular Microbiology, 2008, 10, 301-308.	2.1	163
39	Role of hexosamine biosynthesis in <i>Leishmania</i> growth and virulence. Molecular Microbiology, 2008, 69, 858-869.	2.5	36
40	Virulence of Leishmania major in macrophages and mice requires the gluconeogenic enzyme fructose-1,6-bisphosphatase. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5502-5507.	7.1	139
41	ROLE AND REGULATION OF GLYCOSYLATION PATHWAYS IN LEISHMANIA PARASITES. FASEB Journal, 2006, 20, A454.	0.5	0
42	Surface Determinants of Leishmania Parasites and their Role in Infectivity in the Mammalian Host. Current Molecular Medicine, 2004, 4, 649-665.	1.3	134
43	Characterization of a Leishmania mexicana mutant defective in synthesis of free and protein-linked GPI glycolipids. Molecular and Biochemical Parasitology, 2002, 125, 147-161.	1.1	15