List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4497501/publications.pdf Version: 2024-02-01

ANNE COOVE

#	Article	lF	CITATIONS
1	Yeast Crf1p: An activator in need is an activator indeed. Computational and Structural Biotechnology Journal, 2022, 20, 107-116.	4.1	2
2	Extracytoplasmic Function Sigma Factors Governing Production of the Primary Siderophores in Pathogenic Burkholderia Species. Frontiers in Microbiology, 2022, 13, 851011.	3.5	7
3	Impaired purine homeostasis plays a primary role in trimethoprimâ€mediated induction of virulence genes in Burkholderia thailandensis. Molecular Microbiology, 2021, 115, 610-622.	2.5	3
4	Similar solutions to a common challenge: regulation of genes encoding Ralstonia solanacearum xanthine dehydrogenase. FEMS Microbiology Letters, 2021, 368, .	1.8	2
5	Transcriptome RNA Sequencing Data Set of Differential Gene Expression in Escherichia coli BW25113 Wild-Type and slyA Mutant Strains. Microbiology Resource Announcements, 2021, 10, .	0.6	1
6	Identification of a MarR Subfamily That Regulates Arsenic Resistance Genes. Applied and Environmental Microbiology, 2021, 87, e0158821.	3.1	7
7	Do Global Regulators Hold the Key to Production of Bacterial Secondary Metabolites?. Antibiotics, 2019, 8, 160.	3.7	12
8	The Link between Purine Metabolism and Production of Antibiotics in Streptomyces. Antibiotics, 2019, 8, 76.	3.7	22
9	Redox Sensing by PecS from the Plant Pathogen Pectobacterium atrosepticum and Its Effect on Gene Expression and the Conformation of PecS-Bound Promoter DNA. Biochemistry, 2019, 58, 2564-2575.	2.5	5
10	An EmrB multidrug efflux pump in Burkholderia thailandensis with unexpected roles in antibiotic resistance. Journal of Biological Chemistry, 2019, 294, 1891-1903.	3.4	10
11	A role for Vibrio vulnificus PecS during hypoxia. Scientific Reports, 2019, 9, 2797.	3.3	4
12	MarR Family Transcription Factors from <i>Burkholderia</i> Species: Hidden Clues to Control of Virulence-Associated Genes. Microbiology and Molecular Biology Reviews, 2019, 83, .	6.6	32
13	Control of RNA polymerase II-transcribed genes by direct binding of TOR kinase. Current Genetics, 2018, 64, 131-135.	1.7	8
14	Gene Regulation by Redox-Sensitive Burkholderia thailandensis OhrR and Its Role in Bacterial Killing of Caenorhabditis elegans. Infection and Immunity, 2018, 86, .	2.2	10
15	Redox-Sensitive MarR Homologue BifR from <i>Burkholderia thailandensis</i> Regulates Biofilm Formation. Biochemistry, 2017, 56, 2315-2327.	2.5	15
16	Yeast HMO1: Linker Histone Reinvented. Microbiology and Molecular Biology Reviews, 2017, 81, .	6.6	34
17	Control of DNA end resection by yeast Hmo1p affects efficiency of DNA end-joining. DNA Repair, 2017, 53, 15-23.	2.8	3
18	Global Awakening of Cryptic Biosynthetic Gene Clusters in <i>Burkholderia thailandensis</i> . ACS Chemical Biology, 2017, 12, 3012-3021.	3.4	35

#	Article	IF	CITATIONS
19	The Stringent Response Induced by Phosphate Limitation Promotes Purine Salvage in <i>Agrobacterium fabrum</i> . Biochemistry, 2017, 56, 5831-5843.	2.5	10
20	Cationic ionic liquid surfactant-polyacrylamide gel electrophoresis for enhanced separation of acidic and basic proteins with single-step ribonuclease b glycoforms separation. Journal of Chromatography A, 2017, 1515, 245-251.	3.7	3
21	Regulation of Metabolic Pathways by MarR Family Transcription Factors. Computational and Structural Biotechnology Journal, 2017, 15, 366-371.	4.1	61
22	DNA damage regulates direct association of TOR kinase with the RNA polymerase Il–transcribed <i>HMO1</i> gene. Molecular Biology of the Cell, 2017, 28, 2449-2459.	2.1	15
23	MarR family transcription factors: dynamic variations on a common scaffold. Critical Reviews in Biochemistry and Molecular Biology, 2017, 52, 595-613.	5.2	123
24	pH-Dependent DNA Distortion and Repression of Gene Expression by <i>Pectobacterium atrosepticum</i> PecS. ACS Chemical Biology, 2016, 11, 2049-2056.	3.4	16
25	<i>Streptomyces coelicolor</i> XdhR is a direct target of (p)ppGpp that controls expression of genes encoding xanthine dehydrogenase to promote purine salvage. Molecular Microbiology, 2016, 100, 701-718.	2.5	16
26	Histidine switch controlling pH-dependent protein folding and DNA binding in a transcription factor at the core of synthetic network devices. Molecular BioSystems, 2016, 12, 2417-2426.	2.9	18
27	The high mobility group protein HMO1 functions as a linker histone in yeast. Epigenetics and Chromatin, 2016, 9, 13.	3.9	22
28	Determination of (p)ppGpp Levels During Stringent Response in Streptomyces coelicolor by Thin Layer Chromatography. Bio-protocol, 2016, 6, .	0.4	1
29	Yeast high mobility group protein HMO1 stabilizes chromatin and is evicted during repair of DNA double strand breaks. Nucleic Acids Research, 2015, 43, 5759-5770.	14.5	23
30	The regulatory role of Streptomyces coelicolor TamR in central metabolism. Biochemical Journal, 2015, 466, 347-358.	3.7	6
31	A recommended workflow for DNase I footprinting using a capillary electrophoresis genetic analyzer. Analytical Biochemistry, 2015, 481, 1-3.	2.4	11
32	A moonlighting function of <i>Mycobacterium smegmatis</i> Ku in zinc homeostasis?. Protein Science, 2015, 24, 253-263.	7.6	4
33	Determining the Role of Metal Binding in Protein Cage Assembly. Methods in Molecular Biology, 2015, 1252, 91-100.	0.9	10
34	Ligand-Binding Pocket Bridges DNA-Binding and Dimerization Domains of the Urate-Responsive MarR Homologue MftR from <i>Burkholderia thailandensis</i> . Biochemistry, 2014, 53, 4368-4380.	2.5	32
35	MarR family transcription factors. Current Biology, 2013, 23, R142-R143.	3.9	127
36	Streptomyces coelicolor Encodes a Urate-Responsive Transcriptional Regulator with Homology to PecS from Plant Pathogens. Journal of Bacteriology, 2013, 195, 4954-4965.	2.2	18

#	Article	IF	CITATIONS
37	C-terminal low-complexity sequence repeats of <i>Mycobacterium smegmatis</i> Ku modulate DNA binding. Bioscience Reports, 2013, 33, 175-84.	2.4	26
38	Mycobacterium smegmatis Ku binds DNA without free ends. Biochemical Journal, 2013, 456, 275-282.	3.7	11
39	The transcriptional regulator <scp>TamR</scp> from <i><scp>S</scp>treptomyces coelicolor</i> controls a key step in central metabolism during oxidative stress. Molecular Microbiology, 2013, 87, 1151-1166.	2.5	26
40	Functional comparison of <i>Deinococcus radiodurans</i> Dps proteins suggests distinct <i>in vivo</i> roles. Biochemical Journal, 2012, 447, 381-391.	3.7	26
41	Metal Binding at the <i>Deinococcus radiodurans</i> Dps-1 N-Terminal Metal Site Controls Dodecameric Assembly and DNA Binding. Biochemistry, 2012, 51, 6679-6689.	2.5	18
42	Interaction of <i>Saccharomyces cerevisiae</i> HMO2 Domains with Distorted DNA. Biochemistry, 2012, 51, 1825-1835.	2.5	10
43	On the stoichiometry of <i>Deinococcus radiodurans</i> Dpsâ€l binding to duplex DNA. Proteins: Structure, Function and Bioinformatics, 2012, 80, 713-721.	2.6	14
44	Expression of yeast high mobility group protein HMO1 is regulated by TOR signaling. Gene, 2011, 489, 55-62.	2.2	24
45	MarR homologs with urateâ€binding signature. Protein Science, 2011, 20, 621-629.	7.6	24
46	Functional evolution of bacterial histone-like HU proteins. Current Issues in Molecular Biology, 2011, 13, 1-12.	2.4	80
47	A tale of two functions: enzymatic activity and translational repression by carboxyltransferase. Nucleic Acids Research, 2010, 38, 1217-1227.	14.5	37
48	Molecular Mechanisms of Ligand-Mediated Attenuation of DNA Binding by MarR Family Transcriptional Regulators. Journal of Molecular Cell Biology, 2010, 2, 243-254.	3.3	163
49	Thermodynamics of the DNA Structural Selectivity of the Pol I DNA Polymerases from Escherichia coli and Thermus aquaticus. Biophysical Journal, 2010, 98, 3015-3024.	0.5	18
50	The C-Terminal Domain of Yeast High Mobility Group Protein HMO1 Mediates Lateral Protein Accretion and In-Phase DNA Bending. Biochemistry, 2010, 49, 4051-4059.	2.5	25
51	Urate Is a Ligand for the Transcriptional Regulator PecS. Journal of Molecular Biology, 2010, 402, 539-551.	4.2	30
52	Urate-responsive MarR homologs from Burkholderia. Molecular BioSystems, 2010, 6, 2133.	2.9	19
53	The yeast high mobility group protein HMO2, a subunit of the chromatin-remodeling complex INO80, binds DNA ends. Nucleic Acids Research, 2009, 37, 6389-6399.	14.5	17
54	A functional type I topoisomerase from Pseudomonas aeruginosa. BMC Molecular Biology, 2009, 10, 23.	3.0	6

#	Article	IF	CITATIONS
55	<i>Mycobacterium smegmatis</i> histone-like protein Hlp is nucleoid associated. FEMS Microbiology Letters, 2009, 291, 232-240.	1.8	24
56	Mechanism for Attenuation of DNA Binding by MarR Family Transcriptional Regulators by Small Molecule Ligands. Journal of Molecular Biology, 2009, 390, 1019-1029.	4.2	31
57	Coordination of Ribosomal Protein and Ribosomal RNA Gene Expression in Response to TOR Signaling. Current Genomics, 2009, 10, 198-205.	1.6	65
58	The C-Terminal Domain of HU-Related Histone-like Protein Hlp from <i>Mycobacterium smegmatis</i> Mediates DNA End-Joining. Biochemistry, 2008, 47, 8744-8753.	2.5	28
59	DNA protection by histone-like protein HU from the hyperthermophilic eubacterium Thermotoga maritima. Nucleic Acids Research, 2008, 36, 3956-3968.	14.5	38
60	The N-terminal Extensions of Deinococcus radiodurans Dps-1 Mediate DNA Major Groove Interactions as well as Assembly of the Dodecamer. Journal of Biological Chemistry, 2007, 282, 11921-11930.	3.4	32
61	DNA inhibits catalysis by the carboxyltransferase subunit of acetyl-CoA carboxylase: Implications for active site communication. Protein Science, 2007, 17, 34-42.	7.6	14
62	Characterization of Yeast High Mobility Group Protein HMO2. FASEB Journal, 2007, 21, A283.	0.5	0
63	Pseudomonas aeruginosa encodes a functional type IB topoisomerase. FASEB Journal, 2007, 21, A659.	0.5	0
64	TheDeinococcus radiodurans-Encoded HU Protein Has Two DNA-Binding Domainsâ€. Biochemistry, 2006, 45, 1723-1733.	2.5	22
65	Interactions between N- and C-Terminal Domains of the Saccharomyces cerevisiae High-Mobility Group Protein HMO1 Are Required for DNA Bending. Biochemistry, 2006, 45, 3635-3645.	2.5	30
66	The Crystal Structure of the Transcriptional Regulator HucR from Deinococcus radiodurans Reveals a Repressor Preconfigured for DNA Binding. Journal of Molecular Biology, 2006, 360, 168-177.	4.2	50
67	Crystal Structure of Dps-1, a Functionally Distinct Dps Protein from Deinococcus radiodurans. Journal of Molecular Biology, 2006, 361, 105-114.	4.2	43
68	The Saccharomyces cerevisiae RNA polymerase III recruitment factor subunits Brf1 and Bdp1 impose a strict sequence preference for the downstream half of the TATA box. Nucleic Acids Research, 2006, 34, 5585-5593.	14.5	4
69	Ligand-responsive transcriptional regulation by members of the MarR family of winged helix proteins. Current Issues in Molecular Biology, 2006, 8, 51-62.	2.4	211
70	Surface salt bridges modulate the DNA site size of bacterial histone-like HU proteins. Biochemical Journal, 2005, 390, 49-55.	3.7	25
71	Differential DNA Binding and Protection by Dimeric and Dodecameric forms of the Ferritin Homolog Dps from Deinococcus radiodurans. Journal of Molecular Biology, 2005, 347, 495-508.	4.2	64
72	Negative Cooperativity of Uric Acid Binding to the Transcriptional Regulator HucR from Deinococcus radiodurans. Journal of Molecular Biology, 2005, 350, 617-630.	4.2	42

#	Article	IF	CITATIONS
73	The Saccharomyces cerevisiae High Mobility Group Box Protein HMO1 Contains Two Functional DNA Binding Domains. Journal of Biological Chemistry, 2004, 279, 55234-55240.	3.4	54
74	HucR, a Novel Uric Acid-responsive Member of the MarR Family of Transcriptional Regulators from Deinococcus radiodurans. Journal of Biological Chemistry, 2004, 279, 51442-51450.	3.4	101
75	Histone-like Protein HU from Deinococcus radiodurans Binds Preferentially to Four-way DNA Junctions. Journal of Molecular Biology, 2004, 337, 561-571.	4.2	38
76	Fluoroquinolone-dependent DNA Supercoiling by Vaccinia Topoisomerase I. Journal of Molecular Biology, 2004, 342, 479-487.	4.2	9
77	Substrate specificity of Helicobacter pylori histone-like HU protein is determined by insufficient stabilization of DNA flexure points. Biochemical Journal, 2004, 383, 343-351.	3.7	37
78	Surface Salt Bridges Modulate DNA Wrapping by the Type II DNA-Binding Protein TF1â€. Biochemistry, 2003, 42, 8739-8747.	2.5	14
79	The Role of Surface-Exposed Lysines in Wrapping DNA about the Bacterial Histone-Like Protein HUâ€. Biochemistry, 2002, 41, 7597-7603.	2.5	33
80	Marking the start site of RNA polymerase III transcription: the role of constraint, compaction and continuity of the transcribed DNA strand. EMBO Journal, 2002, 21, 704-714.	7.8	13
81	Effects of DNA strand breaks on transcription by RNA polymerase III: insights into the role of TFIIIB and the polarity of promoter opening. EMBO Journal, 2002, 21, 5508-5515.	7.8	6
82	High-affinity DNA binding of HU protein from the hyperthermophile Thermotoga maritima 1 1Edited by T. Richmond. Journal of Molecular Biology, 2001, 311, 491-502.	4.2	33
83	Mechanisms for the enhanced thermal stability of a mutant of transcription factor 1 as explained by 1H, 15N and 13C NMR chemical shifts and secondary structure analysis. BBA - Proteins and Proteomics, 2000, 1478, 113-124.	2.1	1
84	The RNA polymerase III-recruiting factor TFIIIB induces a DNA bend between the TATA box and the transcriptional start site 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1999, 285, 1429-1440.	4.2	30
85	Affinity, stability and polarity of binding of the TATA binding protein governed by flexure at the TATA box 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1998, 282, 731-739.	4.2	51
86	Transcription Factor IIIB: The Architecture of Its DNA Complex, and Its Roles in Initiation of Transcription by RNA Polymerase III. Cold Spring Harbor Symposia on Quantitative Biology, 1998, 63, 121-131.	1.1	24
87	Twin Hydroxymethyluracil-A Base Pair Steps Define the Binding Site for the DNA-bending Protein TF1. Journal of Biological Chemistry, 1997, 272, 13084-13087.	3.4	21
88	Localizing flexibility within the target site of DNA-bending proteins. Techniques in Protein Chemistry, 1997, 8, 585-592.	0.3	1
89	Localized DNA Flexibility Contributes to Target Site Selection by DNA-bending Proteins. Journal of Molecular Biology, 1996, 260, 120-125.	4.2	95
90	On the Connection Between Inherent DNA Flexure and Preferred Binding of Hydroxymethyluracil- containing DNA by the Type II DNA-binding Protein TF1. Journal of Molecular Biology, 1996, 260, 196-206.	4.2	36

#	Article	IF	CITATIONS
91	Structure of theBacillus subtilisPhage SPO1-Encoded Type II DNA-binding Protein TF1 in Solution. Journal of Molecular Biology, 1996, 263, 259-268.	4.2	28
92	Chemical synthesis and characterization of peptides and oligomeric proteins designed to form transmembrane ion channels. International Journal of Peptide and Protein Research, 1994, 43, 597-607.	0.1	28
93	Reconstitution of Channel Proteins from Excitable Cells in Lipid Bilayers: Authentic and Designed Proteins. Methods in Neurosciences, 1994, , 361-380.	0.5	3
94	Design Principles and Chemical Synthesis of Oligomeric Channel Proteins. Advances in Chemistry Series, 1994, , 329-354.	0.6	0
95	Design of a functional calcium channel protein: Inferences about an ion channelâ€forming motif derived from the primary structure of voltageâ€gated calcium channels. Protein Science, 1993, 2, 1918-1930.	7.6	27
96	Template-assembled synthetic proteins designed to adopt a globular, four-helix bundle conformation form ionic channels in lipid bilayers. Journal of the American Chemical Society, 1993, 115, 5919-5924.	13.7	102
97	[34] Synthetic peptides and proteins as models for pore-forming structure of channel proteins. Methods in Enzymology, 1992, 207, 510-525.	1.0	31
98	Channel Proteins: From Anatomy to Design. Jerusalem Symposia on Quantum Chemistry and Biochemistry, 1992, , 249-268.	0.2	1
99	A molecular blueprint for the pore-forming structure of voltage-gated calcium channels Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 6418-6422.	7.1	73
100	Locus-specific detection of HLA-DQ and -DR antigens by antibodies against synthetic N-terminal octapeptides of the β chain. FEBS Letters, 1985, 189, 329-337.	2.8	5