
Nancy P Keller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4496007/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inadvertent Selection of a Pathogenic Fungus Highlights Areas of Concern in Human Clinical Practices. Journal of Fungi (Basel, Switzerland), 2022, 8, 157.	1.5	0
2	Bacterial hitchhikers derive benefits from fungal housing. Current Biology, 2022, 32, 1523-1533.e6.	1.8	25
3	Cyclooxygenase production of PGE2 promotes phagocyte control of A. fumigatus hyphal growth in larval zebrafish. PLoS Pathogens, 2022, 18, e1010040.	2.1	10
4	Evaluation of Virus-Free and Wild-Type Isolates of <i>Pseudogymnoascus destructans</i> Using a Porcine Ear Model. MSphere, 2022, 7, e0102221.	1.3	4
5	Fungal-fungal cocultivation leads to widespread secondary metabolite alteration requiring the partial loss-of-function VeA1 protein. Science Advances, 2022, 8, eabo6094.	4.7	27
6	Postâ€ŧranslational modifications drive secondary metabolite biosynthesis in <scp><i>Aspergillus</i></scp> : a review. Environmental Microbiology, 2022, 24, 2857-2881.	1.8	17
7	Bacterial–fungal interactions revealed by genome-wide analysis of bacterial mutant fitness. Nature Microbiology, 2021, 6, 87-102.	5.9	49
8	Immune Cell Paracrine Signaling Drives the Neutrophil Response to A. fumigatus in an Infection-on-a-Chip Model. Cellular and Molecular Bioengineering, 2021, 14, 133-145.	1.0	15
9	Metabolomics and genomics in natural products research: complementary tools for targeting new chemical entities. Natural Product Reports, 2021, 38, 2041-2065.	5.2	59
10	Chemical signals driving <scp>bacterial–fungal</scp> interactions. Environmental Microbiology, 2021, 23, 1334-1347.	1.8	31
11	Dual-purpose isocyanides produced by <i>Aspergillus fumigatus</i> contribute to cellular copper sufficiency and exhibit antimicrobial activity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	31
12	Anaerobic gut fungi are an untapped reservoir of natural products. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	35
13	Microevolution in the pansecondary metabolome of <i>Aspergillus flavus</i> and its potential macroevolutionary implications for filamentous fungi. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	34
14	An interpreted atlas of biosynthetic gene clusters from 1,000 fungal genomes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	94
15	Chromosome assembled and annotated genome sequence of <i>Aspergillus flavus</i> NRRL 3357. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	19
16	Transcription Factor Repurposing Offers Insights into Evolution of Biosynthetic Gene Cluster Regulation. MBio, 2021, 12, e0139921.	1.8	17
17	Presence, Mode of Action, and Application of Pathway Specific Transcription Factors in Aspergillus Biosynthetic Gene Clusters. International Journal of Molecular Sciences, 2021, 22, 8709.	1.8	12
18	The sexual spore pigment asperthecin is required for normal ascospore production and protection from UV light in <i>Aspergillus nidulans</i> . Journal of Industrial Microbiology and Biotechnology, 2021, 48, .	1.4	2

#	Article	IF	CITATIONS
19	Aspergillus fumigatus tryptophan metabolic route differently affects host immunity. Cell Reports, 2021, 34, 108673.	2.9	16
20	Secreted Secondary Metabolites Reduce Bacterial Wilt Severity of Tomato in Bacterial–Fungal Co-Infections. Microorganisms, 2021, 9, 2123.	1.6	4
21	Deciphering the Chitin Code in Plant Symbiosis, Defense, and Microbial Networks. Annual Review of Microbiology, 2021, 75, 583-607.	2.9	13
22	Study on the bZIP-Type Transcription Factors NapA and RsmA in the Regulation of Intracellular Reactive Species Levels and Sterigmatocystin Production of Aspergillus nidulans. International Journal of Molecular Sciences, 2021, 22, 11577.	1.8	4
23	Aspergillus fumigatus Fumagillin Contributes to Host Cell Damage. Journal of Fungi (Basel,) Tj ETQq1 1 0.7843	14 rgBT /O	verlgck 10 Tf
24	Comprehensive Guide to Extracting and Expressing Fungal Secondary Metabolites with <i>Aspergillus fumigatus</i> as a Case Study. Current Protocols, 2021, 1, e321.	1.3	5
25	Guide to the Larval Zebrafishâ€∢i>Aspergillus Infection Model. Current Protocols, 2021, 1, e317.	1.3	3
26	Neutrophil phagocyte oxidase activity controls invasive fungal growth and inflammation in zebrafish. Journal of Cell Science, 2020, 133, .	1.2	24
27	Harnessing diverse transcriptional regulators for natural product discovery in fungi. Natural Product Reports, 2020, 37, 6-16.	5.2	70
28	Fungal oxylipins direct programmed developmental switches in filamentous fungi. Nature Communications, 2020, 11, 5158.	5.8	37
29	<i>Penicillium expansum:</i> biology, omics, and management tools for a global postharvest pathogen causing blue mould of pome fruit. Molecular Plant Pathology, 2020, 21, 1391-1404.	2.0	71
30	In the fungus where it happens: History and future propelling Aspergillus nidulans as the archetype of natural products research. Fungal Genetics and Biology, 2020, 144, 103477.	0.9	46
31	Perillaldehyde: A promising antifungal agent to treat oropharyngeal candidiasis. Biochemical Pharmacology, 2020, 180, 114201.	2.0	22
32	Modeling Approaches Reveal New Regulatory Networks in Aspergillus fumigatus Metabolism. Journal of Fungi (Basel, Switzerland), 2020, 6, 108.	1.5	2
33	The Frequency of Sex: Population Genomics Reveals Differences in Recombination and Population Structure of the Aflatoxin-Producing Fungus Aspergillus flavus. MBio, 2020, 11, .	1.8	27
34	Lipo-chitooligosaccharides as regulatory signals of fungal growth and development. Nature Communications, 2020, 11, 3897.	5.8	65
35	Heterologous Expression of the Unusual Terreazepine Biosynthetic Gene Cluster Reveals a Promising Approach for Identifying New Chemical Scaffolds. MBio, 2020, 11, .	1.8	12
36	Let's Get Physical: Bacterial-Fungal Interactions and Their Consequences in Agriculture and Health. Journal of Fungi (Basel, Switzerland), 2020, 6, 243.	1.5	30

#	Article	IF	CITATIONS
37	Visualizing the invisible: class excursions to ignite children's enthusiasm for microbes. Microbial Biotechnology, 2020, 13, 844-887.	2.0	26
38	Blistering1 Modulates Penicillium expansum Virulence Via Vesicle-mediated Protein Secretion. Molecular and Cellular Proteomics, 2020, 19, 344-361.	2.5	22
39	The tetrameric pheromone module SteCâ€MkkBâ€MpkBâ€SteD regulates asexual sporulation, sclerotia formation and aflatoxin production in <scp><i>Aspergillus flavus</i></scp> . Cellular Microbiology, 2020, 22, e13192.	1.1	26
40	Copper Tolerance Mediated by FgAceA and FgCrpA in Fusarium graminearum. Frontiers in Microbiology, 2020, 11, 1392.	1.5	6
41	Tryptophan Co-Metabolism at the Host-Pathogen Interface. Frontiers in Immunology, 2020, 11, 67.	2.2	21
42	Club Cell TRPV4 Serves as a Damage Sensor Driving Lung Allergic Inflammation. Cell Host and Microbe, 2020, 27, 614-628.e6.	5.1	47
43	Contributions of Spore Secondary Metabolites to UV-C Protection and Virulence Vary in Different Aspergillus fumigatus Strains. MBio, 2020, 11, .	1.8	32
44	Efficacy of Voriconazole against Aspergillus fumigatus Infection Depends on Host Immune Function. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	17
45	Diversity of Secondary Metabolism in Aspergillus nidulans Clinical Isolates. MSphere, 2020, 5, .	1.3	32
46	Functional Characterization of Clinical Isolates of the Opportunistic Fungal Pathogen Aspergillus nidulans. MSphere, 2020, 5, .	1.3	32
47	Growing a circular economy with fungal biotechnology: a white paper. Fungal Biology and Biotechnology, 2020, 7, 5.	2.5	228
48	New Insight Into Pathogenicity and Secondary Metabolism of the Plant Pathogen Penicillium expansum Through Deletion of the Epigenetic Reader SntB. Frontiers in Microbiology, 2020, 11, 610.	1.5	35
49	Diketopiperazine Formation in Fungi Requires Dedicated Cyclization and Thiolation Domains. Angewandte Chemie - International Edition, 2019, 58, 14589-14593.	7.2	31
50	Depsipeptide Aspergillicins Revealed by Chromatin Reader Protein Deletion. ACS Chemical Biology, 2019, 14, 1121-1128.	1.6	30
51	Unearthing fungal chemodiversity and prospects for drug discovery. Current Opinion in Microbiology, 2019, 51, 22-29.	2.3	31
52	The HosA Histone Deacetylase Regulates Aflatoxin Biosynthesis Through Direct Regulation of Aflatoxin Cluster Genes. Molecular Plant-Microbe Interactions, 2019, 32, 1210-1228.	1.4	42
53	Copper Utilization, Regulation, and Acquisition by Aspergillus fumigatus. International Journal of Molecular Sciences, 2019, 20, 1980.	1.8	30
54	Gastrointestinal microbiota alteration induced by Mucor circinelloides in a murine model. Journal of Microbiology, 2019, 57, 509-520.	1.3	18

#	Article	IF	CITATIONS
55	Mycotoxins in Conversation With Bacteria and Fungi. Frontiers in Microbiology, 2019, 10, 403.	1.5	103
56	Coâ€opting oxylipin signals in microbial disease. Cellular Microbiology, 2019, 21, e13025.	1.1	11
57	A call to arms: Mustering secondary metabolites for success and survival of an opportunistic pathogen. PLoS Pathogens, 2019, 15, e1007606.	2.1	88
58	Characterization and Biosynthesis of a Rare Fungal Hopane-Type Triterpenoid Glycoside Involved in the Antistress Property of <i>Aspergillus fumigatus</i> . Organic Letters, 2019, 21, 3252-3256.	2.4	21
59	On top of biosynthetic gene clusters: How epigenetic machinery influences secondary metabolism in fungi. Biotechnology Advances, 2019, 37, 107345.	6.0	122
60	Genome sequencing of evolved aspergilli populations reveals robust genomes, transversions in A. flavus, and sexual aberrancy in non-homologous end-joining mutants. BMC Biology, 2019, 17, 88.	1.7	18
61	Fungal secondary metabolism: regulation, function and drug discovery. Nature Reviews Microbiology, 2019, 17, 167-180.	13.6	804
62	Identification of the First Diketomorpholine Biosynthetic Pathway Using FAC-MS Technology. ACS Chemical Biology, 2018, 13, 1142-1147.	1.6	30
63	CoIN: co-inducible nitrate expression system for secondary metabolites in Aspergillus nidulans. Fungal Biology and Biotechnology, 2018, 5, 6.	2.5	29
64	An LaeA- and BrlA-Dependent Cellular Network Governs Tissue-Specific Secondary Metabolism in the Human Pathogen Aspergillus fumigatus. MSphere, 2018, 3, .	1.3	58
65	Interrogation of Benzomalvin Biosynthesis Using Fungal Artificial Chromosomes with Metabolomic Scoring (FAC-MS): Discovery of a Benzodiazepine Synthase Activity. Biochemistry, 2018, 57, 3237-3243.	1.2	19
66	Secondary metabolism in <i>Penicillium expansum</i> : Emphasis on recent advances in patulin research. Critical Reviews in Food Science and Nutrition, 2018, 58, 2082-2098.	5.4	71
67	NRPS-Derived Isoquinolines and Lipopetides Mediate Antagonism between Plant Pathogenic Fungi and Bacteria. ACS Chemical Biology, 2018, 13, 171-179.	1.6	38
68	Biochemical Characterization of Aspergillus fumigatus AroH, a Putative Aromatic Amino Acid Aminotransferase. Frontiers in Molecular Biosciences, 2018, 5, 104.	1.6	6
69	The Zebrafish as a Model Host for Invasive Fungal Infections. Journal of Fungi (Basel, Switzerland), 2018, 4, 136.	1.5	47
70	A possible role for fumagillin in cellular damage during host infection by <i>Aspergillus fumigatus</i> . Virulence, 2018, 9, 1548-1561.	1.8	37
71	Fungal Isocyanide Synthases and Xanthocillin Biosynthesis in Aspergillus fumigatus. MBio, 2018, 9, .	1.8	44
72	Conserved Responses in a War of Small Molecules between a Plant-Pathogenic Bacterium and Fungi. MBio, 2018, 9, .	1.8	73

#	Article	IF	CITATIONS
73	Deletion of a global regulator LaeB leads to the discovery of novel polyketides in Aspergillus nidulans. Organic and Biomolecular Chemistry, 2018, 16, 4973-4976.	1.5	46
74	Apple Intrinsic Factors Modulating the Global Regulator, LaeA, the Patulin Gene Cluster and Patulin Accumulation During Fruit Colonization by Penicillium expansum. Frontiers in Plant Science, 2018, 9, 1094.	1.7	35
75	Fungal attack and host defence pathways unveiled in nearâ€avirulent interactions of <i>Penicillium expansum creA </i> mutants on apples. Molecular Plant Pathology, 2018, 19, 2635-2650.	2.0	66
76	Macrophages inhibit Aspergillus fumigatus germination and neutrophil-mediated fungal killing. PLoS Pathogens, 2018, 14, e1007229.	2.1	106
77	A Bcl-2 Associated Athanogene (bagA) Modulates Sexual Development and Secondary Metabolism in the Filamentous Fungus Aspergillus nidulans. Frontiers in Microbiology, 2018, 9, 1316.	1.5	13
78	Analysis of the Relationship between Alternative Respiration and Sterigmatocystin Formation in Aspergillus nidulans. Toxins, 2018, 10, 168.	1.5	12
79	The Antioxidant Gallic Acid Inhibits Aflatoxin Formation in Aspergillus flavus by Modulating Transcription Factors FarB and CreA. Toxins, 2018, 10, 270.	1.5	96
80	Contribution of ATPase copper transporters in animal but not plant virulence of the crossover pathogen <i>Aspergillus flavus</i> . Virulence, 2018, 9, 1273-1286.	1.8	29
81	Selenate sensitivity of a laeA mutant is restored by overexpression of the bZIP protein MetR in Aspergillus fumigatus. Fungal Genetics and Biology, 2018, 117, 1-10.	0.9	15
82	The epigenetic reader SntB regulates secondary metabolism, development and global histone modifications in Aspergillus flavus. Fungal Genetics and Biology, 2018, 120, 9-18.	0.9	77
83	The Aspergillus nidulans Pbp1 homolog is required for normal sexual development and secondary metabolism. Fungal Genetics and Biology, 2017, 100, 13-21.	0.9	8
84	Heterogeneity Confounds Establishment of "a―Model Microbial Strain. MBio, 2017, 8, .	1.8	57
85	Caspofungin exposure alters the core septin AspB interactome of Aspergillus fumigatus. Biochemical and Biophysical Research Communications, 2017, 485, 221-226.	1.0	5
86	Aspergillus fumigatus Copper Export Machinery and Reactive Oxygen Intermediate Defense Counter Host Copper-Mediated Oxidative Antimicrobial Offense. Cell Reports, 2017, 19, 1008-1021.	2.9	95
87	A cryptic pigment biosynthetic pathway uncovered by heterologous expression is essential for conidial development in <i>Pestalotiopsis fici</i> . Molecular Microbiology, 2017, 105, 469-483.	1.2	39
88	Real-time visualization of immune cell clearance of Aspergillus fumigatus spores and hyphae. Fungal Genetics and Biology, 2017, 105, 52-54.	0.9	23
89	A scalable platform to identify fungal secondary metabolites and their gene clusters. Nature Chemical Biology, 2017, 13, 895-901.	3.9	154
90	Revitalization of a Forward Genetic Screen Identifies Three New Regulators of Fungal Secondary Metabolism in the Genus <i>Aspergillus</i> . MBio, 2017, 8, .	1.8	47

#	Article	IF	CITATIONS
91	A Cationic Polymer That Shows High Antifungal Activity against Diverse Human Pathogens. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	28
92	Microbial volatile communication in human organotypic lung models. Nature Communications, 2017, 8, 1770.	5.8	78
93	LaeA regulation of secondary metabolism modulates virulence in <i>Penicillium expansum</i> and is mediated by sucrose. Molecular Plant Pathology, 2017, 18, 1150-1163.	2.0	93
94	Does the Host Contribute to Modulation of Mycotoxin Production by Fruit Pathogens?. Toxins, 2017, 9, 280.	1.5	13
95	Lipoxygenase Activity Accelerates Programmed Spore Germination in Aspergillus fumigatus. Frontiers in Microbiology, 2017, 8, 831.	1.5	16
96	A Cellular Fusion Cascade Regulated by LaeA Is Required for Sclerotial Development in Aspergillus flavus. Frontiers in Microbiology, 2017, 8, 1925.	1.5	39
97	Multikingdom microscale models. PLoS Pathogens, 2017, 13, e1006424.	2.1	6
98	Drivers of genetic diversity in secondary metabolic gene clusters within a fungal species. PLoS Biology, 2017, 15, e2003583.	2.6	187
99	A Multifaceted Role of Tryptophan Metabolism and Indoleamine 2,3-Dioxygenase Activity in Aspergillus fumigatus–Host Interactions. Frontiers in Immunology, 2017, 8, 1996.	2.2	44
100	Growth-Phase Sterigmatocystin Formation on Lactose Is Mediated via Low Specific Growth Rates in Aspergillus nidulans. Toxins, 2016, 8, 354.	1.5	15
101	Characterization of the Far Transcription Factor Family in <i>Aspergillus flavus</i> . G3: Genes, Genetics, 2016, 6, 3269-3281.	0.8	19
102	Use of Multiple Sequencing Technologies To Produce a High-Quality Genome of the Fungus <i>Pseudogymnoascus destructans</i> , the Causative Agent of Bat White-Nose Syndrome. Genome Announcements, 2016, 4, .	0.8	24
103	Redundant synthesis of a conidial polyketide by two distinct secondary metabolite clusters in <scp><i>A</i></scp> <i>spergillus fumigatus</i> . Environmental Microbiology, 2016, 18, 246-259.	1.8	61
104	Reversible S-nitrosylation limits over synthesis of fungal styrylpyrone upon nitric oxide burst. Applied Microbiology and Biotechnology, 2016, 100, 4123-4134.	1.7	6
105	Plant-like biosynthesis of isoquinoline alkaloids in Aspergillus fumigatus. Nature Chemical Biology, 2016, 12, 419-424.	3.9	79
106	Rac2 Functions in Both Neutrophils and Macrophages To Mediate Motility and Host Defense in Larval Zebrafish. Journal of Immunology, 2016, 197, 4780-4790.	0.4	46
107	Secondary metabolite arsenal of an opportunistic pathogenic fungus. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20160023.	1.8	88
108	Characterization of Aspergillus fumigatus Isolates from Air and Surfaces of the International Space Station. MSphere, 2016, 1, .	1.3	108

#	Article	IF	CITATIONS
109	New Aspercryptins, Lipopeptide Natural Products, Revealed by HDAC Inhibition in <i>Aspergillus nidulans</i> . ACS Chemical Biology, 2016, 11, 2117-2123.	1.6	56
110	Resistance Gene-Guided Genome Mining: Serial Promoter Exchanges in <i>Aspergillus nidulans</i> Reveal the Biosynthetic Pathway for Fellutamide B, a Proteasome Inhibitor. ACS Chemical Biology, 2016, 11, 2275-2284.	1.6	105
111	Polyketide Production of Pestaloficiols and Macrodiolide Ficiolides Revealed by Manipulations of Epigenetic Regulators in an Endophytic Fungus. Organic Letters, 2016, 18, 1832-1835.	2.4	68
112	TrpE feedback mutants reveal roadblocks and conduits toward increasing secondary metabolism in Aspergillus fumigatus. Fungal Genetics and Biology, 2016, 89, 102-113.	0.9	24
113	Microbial metabolomics in open microscale platforms. Nature Communications, 2016, 7, 10610.	5.8	86
114	Production of cross-kingdom oxylipins by pathogenic fungi: An update on their role in development and pathogenicity. Journal of Microbiology, 2016, 54, 254-264.	1.3	71
115	<i>Ralstonia solanacearum</i> lipopeptide induces chlamydospore development in fungi and facilitates bacterial entry into fungal tissues. ISME Journal, 2016, 10, 2317-2330.	4.4	108
116	The Aspergillus fumigatus Damage Resistance Protein Family Coordinately Regulates Ergosterol Biosynthesis and Azole Susceptibility. MBio, 2016, 7, e01919-15.	1.8	60
117	Enhancing Nonribosomal Peptide Biosynthesis in Filamentous Fungi. Methods in Molecular Biology, 2016, 1401, 149-160.	0.4	12
118	FleA Expression in Aspergillus fumigatus Is Recognized by Fucosylated Structures on Mucins and Macrophages to Prevent Lung Infection. PLoS Pathogens, 2016, 12, e1005555.	2.1	44
119	Evolution of Chemical Diversity in a Group of Non-Reduced Polyketide Gene Clusters: Using Phylogenetics to Inform the Search for Novel Fungal Natural Products. Toxins, 2015, 7, 3572-3607.	1.5	27
120	Redox Metabolites Signal Polymicrobial Biofilm Development via the NapA Oxidative Stress Cascade in Aspergillus. Current Biology, 2015, 25, 29-37.	1.8	70
121	Transcriptome analysis of cyclic <scp>AMP</scp> â€dependent protein kinase <scp>A</scp> –regulated genes reveals the production of the novel natural compound fumipyrrole by <scp><i>A</i></scp> <i>AAA<i>A</i></i>	1.2	37
122	Spatial regulation of a common precursor from two distinct genes generates metabolite diversity. Chemical Science, 2015, 6, 5913-5921.	3.7	31
123	The bZIP transcription factor PfZipA regulates secondary metabolism and oxidative stress response in the plant endophytic fungus Pestalotiopsis fici. Fungal Genetics and Biology, 2015, 81, 221-228.	0.9	32
124	One Juliet and four Romeos: VeA and its methyltransferases. Frontiers in Microbiology, 2015, 6, 1.	1.5	1,444
125	Large-Scale Metabolomics Reveals a Complex Response of <i>Aspergillus nidulans</i> to Epigenetic Perturbation. ACS Chemical Biology, 2015, 10, 1535-1541.	1.6	90
126	Fungal artificial chromosomes for mining of the fungal secondary metabolome. BMC Genomics, 2015, 16, 343.	1.2	76

#	Article	IF	CITATIONS
127	Minimum Information about a Biosynthetic Gene cluster. Nature Chemical Biology, 2015, 11, 625-631.	3.9	715
128	Translating biosynthetic gene clusters into fungal armor and weaponry. Nature Chemical Biology, 2015, 11, 671-677.	3.9	207
129	Establishing a Biofilm Co-culture of Pseudomonas and Aspergillus for Metabolite Extraction. Bio-protocol, 2015, 5, .	0.2	4
130	Microbe-Independent Entry of Oomycete RxLR Effectors and Fungal RxLR-Like Effectors Into Plant and Animal Cells Is Specific and Reproducible. Molecular Plant-Microbe Interactions, 2015, 2015, 51-56.	1.4	0
131	A Microfluidic Assay for Identifying Differential Responses of Plant and Human Fungal Pathogens to Tobacco Phylloplanins. Plant Health Progress, 2014, 15, 130-134.	0.8	4
132	Perturbations in small molecule synthesis uncovers an iron-responsive secondary metabolite network in Aspergillus fumigatus. Frontiers in Microbiology, 2014, 5, 530.	1.5	59
133	Global Survey of Canonical Aspergillus flavus G Protein-Coupled Receptors. MBio, 2014, 5, e01501-14.	1.8	71
134	Illumina identification of RsrA, a conserved C2H2 transcription factor coordinating the NapA mediated oxidative stress signaling pathway in Aspergillus. BMC Genomics, 2014, 15, 1011.	1.2	25
135	Formation of 1-octen-3-ol from <i>Aspergillus flavus</i> conidia is accelerated after disruption of cells independently of Ppo oxygenases, and is not a main cause of inhibition of germination. PeerJ, 2014, 2, e395.	0.9	24
136	Strategies for mining fungal natural products. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 301-313.	1.4	168
137	Spatial and temporal control of fungal natural product synthesis. Natural Product Reports, 2014, 31, 1277-1286.	5.2	61
138	Distinct Innate Immune Phagocyte Responses to Aspergillus fumigatus Conidia and Hyphae in Zebrafish Larvae. Eukaryotic Cell, 2014, 13, 1266-1277.	3.4	82
139	Co-ordination between BrlA regulation and secretion of the oxidoreductase FmqD directs selective accumulation of fumiquinazoline C to conidial tissues in <i>Aspergillus fumigatus</i> . Cellular Microbiology, 2014, 16, 1267-1283.	1.1	58
140	A Volatile Relationship: Profiling an Inter-Kingdom Dialogue Between two Plant Pathogens, Ralstonia Solanacearum and Aspergillus Flavus. Journal of Chemical Ecology, 2014, 40, 502-513.	0.9	55
141	Molecular mechanisms of Aspergillus flavus secondary metabolism and development. Fungal Genetics and Biology, 2014, 66, 11-18.	0.9	195
142	A Novel Automethylation Reaction in the Aspergillus nidulans LaeA Protein Generates S-Methylmethionine. Journal of Biological Chemistry, 2013, 288, 14032-14045.	1.6	66
143	A Nonribosomal Peptide Synthetase-Derived Iron(III) Complex from the Pathogenic Fungus <i>Aspergillus fumigatus</i> . Journal of the American Chemical Society, 2013, 135, 2064-2067.	6.6	111
144	<scp>VeA</scp> and <scp>MvlA</scp> repression of the cryptic orsellinic acid gene cluster in <i><scp>A</scp>spergillus nidulans</i> involves histone 3 acetylation. Molecular Microbiology, 2013, 89, 963-974.	1.2	37

#	Article	IF	CITATIONS
145	Homologous NRPSâ€like Gene Clusters Mediate Redundant Smallâ€Molecule Biosynthesis in <i>Aspergillus flavus</i> . Angewandte Chemie - International Edition, 2013, 52, 1590-1594.	7.2	101
146	bZIP transcription factors affecting secondary metabolism, sexual development and stress responses in Aspergillus nidulans. Microbiology (United Kingdom), 2013, 159, 77-88.	0.7	89
147	RsmA Regulates Aspergillus fumigatus Gliotoxin Cluster Metabolites Including Cyclo(L-Phe-L-Ser), a Potential New Diagnostic Marker for Invasive Aspergillosis. PLoS ONE, 2013, 8, e62591.	1.1	38
148	Secondary Metabolism and Development Is Mediated by LlmF Control of VeA Subcellular Localization in Aspergillus nidulans. PLoS Genetics, 2013, 9, e1003193.	1.5	76
149	Low-Volume Toolbox for the Discovery of Immunosuppressive Fungal Secondary Metabolites. PLoS Pathogens, 2013, 9, e1003289.	2.1	73
150	Suspended microfluidics. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10111-10116.	3.3	156
151	Functional Analyses of <i>Trichoderma reesei</i> LAE1 Reveal Conserved and Contrasting Roles of This Regulator. G3: Genes, Genomes, Genetics, 2013, 3, 369-378.	0.8	109
152	Prototype of an intertwined secondary-metabolite supercluster. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17065-17070.	3.3	174
153	The bZIP Protein MeaB Mediates Virulence Attributes in Aspergillus flavus. PLoS ONE, 2013, 8, e74030.	1.1	44
154	Western Analysis of Histone Modifications (Aspergillus nidulans). Bio-protocol, 2013, 3, .	0.2	4
155	Loss of CclA, required for histone 3 lysine 4 methylation, decreases growth but increases secondary metabolite production in <i>Aspergillus fumigatus</i> . PeerJ, 2013, 1, e4.	0.9	63
156	Aspergillus Oxylipin Signaling and Quorum Sensing Pathways Depend on G Protein-Coupled Receptors. Toxins, 2012, 4, 695-717.	1.5	94
157	Toward Awakening Cryptic Secondary Metabolite Gene Clusters in Filamentous Fungi. Methods in Enzymology, 2012, 517, 303-324.	0.4	116
158	Genome-Based Cluster Deletion Reveals an Endocrocin Biosynthetic Pathway in Aspergillus fumigatus. Applied and Environmental Microbiology, 2012, 78, 4117-4125.	1.4	83
159	Overexpression of the <i><scp>A</scp>spergillus nidulans</i> histone 4 acetyltransferase <scp>EsaA</scp> increases activation of secondary metabolite production. Molecular Microbiology, 2012, 86, 314-330.	1.2	116
160	NosA, a transcription factor important in Aspergillus fumigatus stress and developmental response, rescues the germination defect of a laeA deletion. Fungal Genetics and Biology, 2012, 49, 857-865.	0.9	31
161	An <i>Aspergillus nidulans</i> bZIP response pathway hardwired for defensive secondary metabolism operates through <i>aflR</i> . Molecular Microbiology, 2012, 83, 1024-1034.	1.2	93
162	<i>Aspergillus flavus</i> . Annual Review of Phytopathology, 2011, 49, 107-133.	3.5	521

#	Article	IF	CITATIONS
163	Identification of Cryptic Products of the Gliotoxin Gene Cluster Using NMR-Based Comparative Metabolomics and a Model for Gliotoxin Biosynthesis. Journal of the American Chemical Society, 2011, 133, 9678-9681.	6.6	85
164	Transcriptional regulatory elements in fungal secondary metabolism. Journal of Microbiology, 2011, 49, 329-339.	1.3	150
165	Unraveling polyketide synthesis in members of the genus Aspergillus. Applied Microbiology and Biotechnology, 2010, 86, 1719-1736.	1.7	73
166	Fungal Secondary Metabolites and Their Fundamental Roles in Human Mycoses. Current Fungal Infection Reports, 2010, 4, 256-265.	0.9	9
167	Beyond aflatoxin: four distinct expression patterns and functional roles associated with <i>Aspergillus flavus</i> secondary metabolism gene clusters. Molecular Plant Pathology, 2010, 11, 213-226.	2.0	168
168	Heterochromatic marks are associated with the repression of secondary metabolism clusters in Aspergillus nidulans. Molecular Microbiology, 2010, 76, 1376-1386.	1.2	292
169	FfVel1 and FfLae1, components of a <i>velvet</i> â€like complex in <i>Fusarium fujikuroi</i> , affect differentiation, secondary metabolism and virulence. Molecular Microbiology, 2010, 77, 972-994.	1.2	234
170	Telomere position effect is regulated by heterochromatin-associated proteins and NkuA in Aspergillus nidulans. Microbiology (United Kingdom), 2010, 156, 3522-3531.	0.7	29
171	Suppressor Mutagenesis Identifies a Velvet Complex Remediator of Aspergillus nidulans Secondary Metabolism. Eukaryotic Cell, 2010, 9, 1816-1824.	3.4	79
172	Characterization of the <i>Aspergillus nidulans</i> Monodictyphenone Gene Cluster. Applied and Environmental Microbiology, 2010, 76, 2067-2074.	1.4	159
173	Secondary metabolism in fungi: does chromosomal location matter?. Current Opinion in Microbiology, 2010, 13, 431-436.	2.3	232
174	Involvement of transposon-like elements in penicillin gene cluster regulation. Fungal Genetics and Biology, 2010, 47, 423-432.	0.9	57
175	Molecular genetic analysis of the orsellinic acid/F9775 genecluster of Aspergillus nidulans. Molecular BioSystems, 2010, 6, 587-593.	2.9	118
176	<i>Aspergillus fumigatus</i> LaeA-Mediated Phagocytosis Is Associated with a Decreased Hydrophobin Layer. Infection and Immunity, 2010, 78, 823-829.	1.0	60
177	Distinct Roles for VeA and LaeA in Development and Pathogenesis of <i>Aspergillus flavus</i> . Eukaryotic Cell, 2009, 8, 1051-1060.	3.4	154
178	Pathogenesis of <i>Aspergillus fumigatus</i> in Invasive Aspergillosis. Clinical Microbiology Reviews, 2009, 22, 447-465.	5.7	885
179	Chromatin-level regulation of biosynthetic gene clusters. Nature Chemical Biology, 2009, 5, 462-464.	3.9	358
180	A Gene Cluster Containing Two Fungal Polyketide Synthases Encodes the Biosynthetic Pathway for a Polyketide, Asperfuranone, in <i>Aspergillus nidulans</i> . Journal of the American Chemical Society, 2009, 131, 2965-2970.	6.6	292

#	Article	IF	CITATIONS
181	HdaA, a class 2 histone deacetylase of Aspergillus fumigatus, affects germination and secondary metabolite production. Fungal Genetics and Biology, 2009, 46, 782-790.	0.9	159
182	Oxygenase Coordination Is Required for Morphological Transition and the Host–Fungus Interaction of <i>Aspergillus flavus</i> . Molecular Plant-Microbe Interactions, 2009, 22, 882-894.	1.4	84
183	VelB/VeA/LaeA Complex Coordinates Light Signal with Fungal Development and Secondary Metabolism. Science, 2008, 320, 1504-1506.	6.0	843
184	Requirement of LaeA for secondary metabolism and sclerotial production in Aspergillus flavus. Fungal Genetics and Biology, 2008, 45, 1422-1429.	0.9	201
185	H3K9 Methylation Regulates Growth and Development in <i>Aspergillus fumigatus</i> . Eukaryotic Cell, 2008, 7, 2052-2060.	3.4	71
186	Defects in Conidiophore Development and Conidium-Macrophage Interactions in a Dioxygenase Mutant of Aspergillus fumigatus. Infection and Immunity, 2008, 76, 3214-3220.	1.0	43
187	Transcriptional Regulation of Chemical Diversity in Aspergillus fumigatus by LaeA. PLoS Pathogens, 2007, 3, e50.	2.1	326
188	Identification of Dioxygenases Required for Aspergillus Development. Journal of Biological Chemistry, 2007, 282, 34707-34718.	1.6	88
189	Oxylipins as developmental and host–fungal communication signals. Trends in Microbiology, 2007, 15, 109-118.	3.5	289
190	Accurate prediction of the Aspergillus nidulans terrequinone gene cluster boundaries using the transcriptional regulator LaeA. Fungal Genetics and Biology, 2007, 44, 1134-1145.	0.9	99
191	Histone Deacetylase Activity Regulates Chemical Diversity in <i>Aspergillus</i> . Eukaryotic Cell, 2007, 6, 1656-1664.	3.4	403
192	LaeA, a global regulator ofAspergillustoxins. Medical Mycology, 2006, 44, 83-85.	0.3	47
193	Oxylipins act as determinants of natural product biosynthesis and seed colonization in Aspergillus nidulans. Molecular Microbiology, 2006, 59, 882-892.	1.2	144
194	Secondary metabolic gene cluster silencing in Aspergillus nidulans. Molecular Microbiology, 2006, 61, 1636-1645.	1.2	200
195	GliZ, a Transcriptional Regulator of Gliotoxin Biosynthesis, Contributes to Aspergillus fumigatus Virulence. Infection and Immunity, 2006, 74, 6761-6768.	1.0	203
196	Fundamental Contribution of β-Oxidation to Polyketide Mycotoxin Production In Planta. Molecular Plant-Microbe Interactions, 2005, 18, 783-793.	1.4	115
197	Fungal secondary metabolism — from biochemistry to genomics. Nature Reviews Microbiology, 2005, 3, 937-947.	13.6	1,425
198	Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature, 2005, 438, 1151-1156.	13.7	1,272

#	Article	IF	CITATIONS
199	LaeA, a Regulator of Morphogenetic Fungal Virulence Factors. Eukaryotic Cell, 2005, 4, 1574-1582.	3.4	298
200	Three putative oxylipin biosynthetic genes integrate sexual and asexual development in Aspergillus nidulans. Microbiology (United Kingdom), 2005, 151, 1809-1821.	0.7	163
201	Aspergillus Cyclooxygenase-Like Enzymes Are Associated with Prostaglandin Production and Virulence. Infection and Immunity, 2005, 73, 4548-4559.	1.0	112
202	Regulation of Secondary Metabolism in Filamentous Fungi. Annual Review of Phytopathology, 2005, 43, 437-458.	3.5	454
203	The Lipid Body Protein, PpoA, Coordinates Sexual and Asexual Sporulation in Aspergillus nidulans. Journal of Biological Chemistry, 2004, 279, 11344-11353.	1.6	171
204	Characterization of the Aspergillus parasiticus Δ12-desaturase gene: a role for lipid metabolism in the Aspergillus–seed interaction. Microbiology (United Kingdom), 2004, 150, 2881-2888.	0.7	61
205	Increased Conidiation Associated with Progression along the Sterigmatocystin Biosynthetic Pathway. Mycologia, 2004, 96, 1190.	0.8	33
206	veA Is Required for Toxin and Sclerotial Production in Aspergillus parasiticus. Applied and Environmental Microbiology, 2004, 70, 4733-4739.	1.4	249
207	LaeA, a Regulator of Secondary Metabolism in Aspergillus spp. Eukaryotic Cell, 2004, 3, 527-535.	3.4	869
208	Blockage of methylcitrate cycle inhibits polyketide production in Aspergillus nidulans. Molecular Microbiology, 2004, 52, 541-550.	1.2	28
209	Mitochondrial β-oxidation in Aspergillus nidulans. Molecular Microbiology, 2004, 54, 1173-1185.	1.2	128
210	Regulation of aflatoxin synthesis by FadA/cAMP/protein kinase A signaling in Aspergillus parasiticus. Mycopathologia, 2004, 158, 219-232.	1.3	70
211	Two Δ9-stearic acid desaturases are required for Aspergillus nidulans growth and development. Fungal Genetics and Biology, 2004, 41, 501-509.	0.9	29
212	Increased conidiation associated with progression along the sterigmatocystin biosynthetic pathway. Mycologia, 2004, 96, 1190-1198.	0.8	65
213	Increased conidiation associated with progression along the sterigmatocystin biosynthetic pathway. Mycologia, 2004, 96, 1190-8.	0.8	19
214	Pka, Ras and RGS Protein Interactions Regulate Activity of AflR, a Zn(II)2Cys6 Transcription Factor in <i>Aspergillus nidulans</i> . Genetics, 2003, 165, 1095-1104.	1.2	128
215	Relationship between Secondary Metabolism and Fungal Development. Microbiology and Molecular Biology Reviews, 2002, 66, 447-459.	2.9	865
216	RcoA has pleiotropic effects on Aspergillus nidulans cellular development. Molecular Microbiology, 2001, 39, 1482-1493.	1.2	72

#	Article	IF	CITATIONS
217	Genetic Involvement of a cAMP-Dependent Protein Kinase in a G Protein Signaling Pathway Regulating Morphological and Chemical Transitions in <i>Aspergillus nidulans</i> . Genetics, 2001, 157, 591-600.	1.2	398
218	A peanut seed lipoxygenase responsive to Aspergillus colonization. Plant Molecular Biology, 2000, 42, 689-701.	2.0	73
219	Aspergillus nidulans Mutants Defective in stc Gene Cluster Regulation. Genetics, 1999, 153, 715-720.	1.2	68
220	Soybean lipoxygenase is active on nonaqueous media at low moisture: a constraint to xerophilic fungi and aflatoxins?. JAOCS, Journal of the American Oil Chemists' Society, 1998, 75, 1801-1808.	0.8	8
221	Sequence-specific binding by Aspergillus nidulans AflR, a C6 zinc cluster protein regulating mycotoxin biosynthesis. Molecular Microbiology, 1998, 28, 1355-1365.	1.2	222
222	pH Regulation of Sterigmatocystin and Aflatoxin Biosynthesis in Aspergillus spp Phytopathology, 1997, 87, 643-648.	1.1	193
223	Metabolic Pathway Gene Clusters in Filamentous Fungi. Fungal Genetics and Biology, 1997, 21, 17-29.	0.9	563
224	Conservation of structure and function of the aflatoxin regulatory geneaflR fromAspergillus nidulans andA. flavus. Current Genetics, 1996, 29, 549-555.	0.8	236
225	Conservation of structure and function of the aflatoxin regulatory gene aflR from Aspergillus nidulans and A. flavus. Current Genetics, 1996, 29, 549-555.	0.8	28
226	A Visual Pattern of Mycotoxin Production in Maize Kernels byAspergillusspp Phytopathology, 1994, 84, 483.	1.1	66
227	Genetic Regulation of Aspergillus Secondary Metabolites and Their Role in Fungal Pathogenesis. , 0, , 185-199.		1
228	<i>Aspergillus nidulans</i> : a Model for Elucidation of <i>Aspergillus fumigatus</i> Secondary Metabolism. , 0, , 235-243.		0