Hartmut Oschkinat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4495038/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature, 2002, 420, 99-102.	27.8	826
2	Structure of the WW domain of a kinase-associated protein complexed with a proline-rich peptide. Nature, 1996, 382, 646-649.	27.8	426
3	Automated NOESY interpretation with ambiguous distance restraints: the refined NMR solution structure of the pleckstrin homology domain from β-spectrin 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1997, 269, 408-422.	4.2	414
4	Perspectives on NMR in drug discovery: a technique comes of age. Nature Reviews Drug Discovery, 2008, 7, 738-745.	46.4	373
5	Peptide conformations. Part 31. The conformation of cyclosporin a in the crystal and in solution. Helvetica Chimica Acta, 1985, 68, 682-704.	1.6	343
6	AhR sensing of bacterial pigments regulates antibacterial defence. Nature, 2014, 512, 387-392.	27.8	309
7	A software tool for the prediction of Xaa-Pro peptide bond conformations in proteins based on 13C chemical shift statistics. Journal of Biomolecular NMR, 2002, 24, 149-154.	2.8	308
8	Backbone and Side-Chain13C and15N Signal Assignments of the α-Spectrin SH3 Domain by Magic Angle Spinning Solid-State NMR at 17.6 Tesla. ChemBioChem, 2001, 2, 272-281.	2.6	302
9	Solid-state NMR and SAXS studies provide a structural basis for the activation of αB-crystallin oligomers. Nature Structural and Molecular Biology, 2010, 17, 1037-1042.	8.2	263
10	Three-dimensional NMR spectroscopy of a protein in solution. Nature, 1988, 332, 374-376.	27.8	258
11	Structure of the pleckstrin homology domain from β-spectrin. Nature, 1994, 369, 675-677.	27.8	256
12	Rapid Proton-Detected NMR Assignment for Proteins with Fast Magic Angle Spinning. Journal of the American Chemical Society, 2014, 136, 12489-12497.	13.7	254
13	Recognition of Proline-Rich Motifs by Protein-Protein-Interaction Domains. Angewandte Chemie - International Edition, 2005, 44, 2852-2869.	13.8	236
14	Specific interactions between the syntrophin PDZ domain and voltage-gated sodium channels. Nature Structural Biology, 1998, 5, 19-24.	9.7	217
15	Structural analysis of WW domains and design of a WW prototype. Nature Structural Biology, 2000, 7, 375-379.	9.7	208
16	The interaction of thrombin with fibrinogen. A structural basis for its specificity. FEBS Journal, 1992, 206, 187-195.	0.2	203
17	N-terminal domain of αB-crystallin provides a conformational switch for multimerization and structural heterogeneity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6409-6414.	7.1	185
18	Protonâ€Detected Solidâ€State NMR Spectroscopy of Fibrillar and Membrane Proteins. Angewandte Chemie - International Edition, 2011, 50, 4508-4512.	13.8	179

#	Article	IF	CITATIONS
19	General structural motifs of amyloid protofilaments. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16248-16253.	7.1	176
20	Peptide conformations. Part 30. Assignment of the1H-,13C-, and15N-NMR spectra of cyclosporin A in CDCl3 and C6D6 by a combination of homo- and heteronuclear two-dimensional techniques. Helvetica Chimica Acta, 1985, 68, 661-681.	1.6	164
21	Sample Optimization and Identification of Signal Patterns of Amino Acid Side Chains in 2D RFDR Spectra of the α-Spectrin SH3 Domain. Journal of Magnetic Resonance, 2000, 143, 411-416.	2.1	162
22	Dynamic Nuclear Polarization of Deuterated Proteins. Angewandte Chemie - International Edition, 2010, 49, 7803-7806.	13.8	154
23	Fast passage dynamic nuclear polarization on rotating solids. Journal of Magnetic Resonance, 2012, 224, 13-21.	2.1	140
24	Quantification of PDZ Domain Specificity, Prediction of Ligand Affinity and Rational Design of Super-binding Peptides. Journal of Molecular Biology, 2004, 343, 703-718.	4.2	138
25	A software framework for analysing solid-state MAS NMR data. Journal of Biomolecular NMR, 2011, 51, 437-447.	2.8	138
26	EVH1 domains: structure, function and interactions. FEBS Letters, 2002, 513, 45-52.	2.8	132
27	1H Detection in MAS Solid-State NMR Spectroscopy of Biomacromolecules Employing Pulsed Field Gradients for Residual Solvent Suppression⊥. Journal of the American Chemical Society, 2003, 125, 7788-7789.	13.7	132
28	Determination of Solid-State NMR Structures of Proteins by Means of Three-Dimensional 15Nâ^'13Câ^'13C Dipolar Correlation Spectroscopy and Chemical Shift Analysis. Biochemistry, 2003, 42, 11476-11483.	2.5	132
29	Characterization of Membrane Proteins in Isolated Native Cellular Membranes by Dynamic Nuclear Polarization Solid‣tate NMR Spectroscopy without Purification and Reconstitution. Angewandte Chemie - International Edition, 2012, 51, 432-435.	13.8	124
30	Enhanced Resolution and Coherence Lifetimes in the Solid-State NMR Spectroscopy of Perdeuterated Proteins under Ultrafast Magic-Angle Spinning. Journal of Physical Chemistry Letters, 2011, 2, 2205-2211.	4.6	123
31	SNARE motif-mediated sorting of synaptobrevin by the endocytic adaptors clathrin assembly lymphoid myeloid leukemia (CALM) and AP180 at synapses. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13540-13545.	7.1	123
32	Delay of phagosome maturation by a mycobacterial lipid is reversed by nitric oxide. Cellular Microbiology, 2008, 10, 1530-1545.	2.1	122
33	Optimum levels of exchangeable protons in perdeuterated proteins for proton detection in MAS solid-state NMR spectroscopy. Journal of Biomolecular NMR, 2010, 46, 67-73.	2.8	120
34	WW domain sequence activity relationships identified using ligand recognition propensities of 42 WW domains. Protein Science, 2003, 12, 491-500.	7.6	119
35	An Approach to the Structure Determination of Larger Proteins Using Triple Resonance NMR Experiments in Conjunction with Random Fractional Deuteration. Journal of the American Chemical Society, 1996, 118, 407-415.	13.7	114
36	Assigning large proteins in the solid state: a MAS NMR resonance assignment strategy using selectively and extensively 13C-labelled proteins. Journal of Biomolecular NMR, 2009, 44, 245-260.	2.8	110

#	Article	IF	CITATIONS
37	Neurotoxin II Bound to Acetylcholine Receptors in Native Membranes Studied by Dynamic Nuclear Polarization NMR. Journal of the American Chemical Society, 2011, 133, 19266-19269.	13.7	108
38	Cryogenic temperature effects and resolution upon slow cooling of protein preparations in solid state NMR. Journal of Biomolecular NMR, 2011, 51, 283-292.	2.8	108
39	Solution structures of the YAP65 WW domain and the variant L30 K in complex with the peptides GTPPPPYTVG, N-(n-octyl)-GPPPY and PLPPY and the application of peptide libraries reveal a minimal binding epitope. Journal of Molecular Biology, 2001, 314, 1147-1156.	4.2	106
40	αB-Crystallin: A Hybrid Solid-State/Solution-State NMR Investigation Reveals Structural Aspects of the Heterogeneous Oligomer. Journal of Molecular Biology, 2009, 385, 1481-1497.	4.2	106
41	Theoretical aspects of Magic Angle Spinning - Dynamic Nuclear Polarization. Journal of Magnetic Resonance, 2015, 258, 102-120.	2.1	101
42	Structural changes of TasA in biofilm formation of <i>Bacillus subtilis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3237-3242.	7.1	97
43	Host monitoring of quorum sensing during <i>Pseudomonas aeruginosa</i> infection. Science, 2019, 366, .	12.6	95
44	Structure of outer membrane protein G in lipid bilayers. Nature Communications, 2017, 8, 2073.	12.8	91
45	Large Protein Complexes with Extreme Rotational Correlation Times Investigated in Solution by Magic-Angle-Spinning NMR Spectroscopy. Journal of the American Chemical Society, 2009, 131, 15968-15969.	13.7	86
46	Regulation of endosomal membrane traffic by a Gadkin/AP-1/kinesin KIF5 complex. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15344-15349.	7.1	85
47	The Structures of Native Phosphorylated Chicken Cystatin and of a Recombinant Unphosphorylated Variant in Solution. Journal of Molecular Biology, 1993, 234, 1048-1059.	4.2	84
48	MUSIC in Triple-Resonance Experiments: Amino Acid Type-Selective 1H–15N Correlations. Journal of Magnetic Resonance, 1999, 141, 34-43.	2.1	82
49	Conformational Variability of Chicken Cystatin. Journal of Molecular Biology, 1993, 234, 1060-1069.	4.2	81
50	The ScPex13p SH3 Domain Exposes Two Distinct Binding Sites for Pex5p and Pex14p. Journal of Molecular Biology, 2003, 326, 1427-1435.	4.2	80
51	Solid-State Magic-Angle Spinning NMR of Outer-Membrane Protein G from Escherichia coli. ChemBioChem, 2005, 6, 1679-1684.	2.6	79
52	Sulindac-Derived Ras Pathway Inhibitors Target the Ras–Raf Interaction and Downstream Effectors in the Ras Pathway. Angewandte Chemie - International Edition, 2004, 43, 454-458.	13.8	78
53	Detection of dynamic water molecules in a microcrystalline sample of the SH3 domain of α-spectrin by MAS solid-state NMR. Journal of Biomolecular NMR, 2005, 31, 295-310.	2.8	78
54	The effect of biradical concentration on the performance of DNP-MAS-NMR. Journal of Magnetic Resonance, 2012, 216, 209-212.	2.1	78

Нактмит Озснкімат

#	Article	IF	CITATIONS
55	Characterization of 1Hâ^'H Distances in a Uniformly 2H,15N-Labeled SH3 Domain by MAS Solid-State NMR Spectroscopy§. Journal of the American Chemical Society, 2003, 125, 1488-1489.	13.7	77
56	Solution structure of the receptor tyrosine kinase EphB2 SAM domain and identification of two distinct homotypic interaction sites. Protein Science, 1999, 8, 1954-1961.	7.6	73
57	NMR structure of the Wnt modulator protein Sclerostin. Biochemical and Biophysical Research Communications, 2009, 380, 160-165.	2.1	72
58	Small-Molecule Scaffolds for CYP51 Inhibitors Identified by High-Throughput Screening and Defined by X-Ray Crystallography. Antimicrobial Agents and Chemotherapy, 2007, 51, 3915-3923.	3.2	70
59	Two-dimensional correlation of directly and remotely connected transitions by z-filtered COSY. Journal of Magnetic Resonance, 1986, 69, 559-566.	0.5	67
60	MUSIC, Selective Pulses, and Tuned Delays: Amino Acid Type-Selective 1H–15N Correlations, II. Journal of Magnetic Resonance, 2001, 148, 61-72.	2.1	64
61	DNP NMR of biomolecular assemblies. Journal of Structural Biology, 2019, 206, 90-98.	2.8	64
62	Antigen 85C Inhibition Restricts Mycobacterium tuberculosis Growth through Disruption of Cord Factor Biosynthesis. Antimicrobial Agents and Chemotherapy, 2012, 56, 1735-1743.	3.2	62
63	A Wellâ€Defined Pd Hybrid Material for the <i>Z</i> â€Selective Semihydrogenation of Alkynes Characterized at the Molecular Level by DNP SENS. Chemistry - A European Journal, 2013, 19, 12234-12238.	3.3	61
64	Improved Dynamic Nuclear Polarization Surfaceâ€Enhanced NMR Spectroscopy through Controlled Incorporation of Deuterated Functional Groups. Angewandte Chemie - International Edition, 2013, 52, 1222-1225.	13.8	58
65	Receptor binding properties of fourâ€helixâ€bundle growth factors deduced from electrostatic analysis. Protein Science, 1994, 3, 920-935.	7.6	57
66	Measurement of Multiple Ï^ Torsion Angles in Uniformly 13C,15N-Labeled α-Spectrin SH3 Domain Using 3D 15Nâ^'13Câ^'13Câ"15N MAS Dipolar-Chemical Shift Correlation Spectroscopy. Journal of the American Chemical Society, 2003, 125, 6827-6833.	13.7	57
67	MAS NMR structure refinement of uniformly 13C enriched chlorophyll a/water aggregates with 2D dipolar correlation spectroscopy. Chemical Physics Letters, 1995, 237, 502-508.	2.6	56
68	An approach to global fold determination using limited NMR data from larger proteins selectively protonated at specific residue types. Journal of Biomolecular NMR, 1996, 8, 360-368.	2.8	56
69	Structural biology applications of solid state MAS DNP NMR. Journal of Magnetic Resonance, 2016, 269, 213-224.	2.1	55
70	RIP2 filament formation is required for NOD2 dependent NF-κB signalling. Nature Communications, 2018, 9, 4043.	12.8	55
71	An integrated approach to structural genomics. Progress in Biophysics and Molecular Biology, 2000, 73, 347-362.	2.9	54
72	Out-and-back 13C–13C scalar transfers in protein resonance assignment by proton-detected solid-state NMR under ultra-fast MAS. Journal of Biomolecular NMR, 2013, 56, 379-386.	2.8	54

#	Article	IF	CITATIONS
73	Light–Dark Adaptation of Channelrhodopsin Involves Photoconversion between the all- <i>trans</i> and 13- <i>cis</i> Retinal Isomers. Biochemistry, 2015, 54, 5389-5400.	2.5	54
74	Synthesis of an Array Comprising 837 Variants of the hYAP WW Protein Domain. Angewandte Chemie - International Edition, 2001, 40, 897-900.	13.8	53
75	Preferential and Specific Binding of Human αB-Crystallin to a Cataract-Related Variant of γS-Crystallin. Structure, 2013, 21, 2221-2227.	3.3	53
76	High-throughput three-dimensional protein structure determination. Current Opinion in Biotechnology, 2001, 12, 348-354.	6.6	52
77	Dynamic nuclear polarization of spherical nanoparticles. Physical Chemistry Chemical Physics, 2013, 15, 20706.	2.8	52
78	Combining SPOT Synthesis and Native Peptide Ligation to Create Large Arrays of WW Protein Domains. Angewandte Chemie - International Edition, 2003, 42, 1136-1140.	13.8	51
79	Quantitative and Qualitative Analysis of Surface Modified Cellulose Utilizing TGA-MS. Materials, 2016, 9, 415.	2.9	51
80	Title is missing!. Journal of Biomolecular NMR, 1997, 10, 95-106.	2.8	50
81	The solution structure of the N-terminal domain of E3L shows a tyrosine conformation that may explain its reduced affinity to Z-DNA in vitro. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2712-2717.	7.1	50
82	bcTol: a highly water-soluble biradical for efficient dynamic nuclear polarization of biomolecules. Chemical Communications, 2016, 52, 7020-7023.	4.1	49
83	Dynamic Nuclear Polarization Enhanced MAS NMR Spectroscopy for Structural Analysis of HIV-1 Protein Assemblies. Journal of Physical Chemistry B, 2016, 120, 329-339.	2.6	49
84	The structures of the active center in dark-adapted bacteriorhodopsin by solution-state NMR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9765-9770.	7.1	48
85	[2,3-13C]-labeling of Aromatic ResiduesGetting a Head Start in the Magic-Angle-Spinning NMR Assignment of Membrane Proteins. Journal of the American Chemical Society, 2008, 130, 408-409.	13.7	48
86	Protein Structure Determination with Three- and Four-Dimensional NMR Spectroscopy. Angewandte Chemie International Edition in English, 1994, 33, 277-293.	4.4	47
87	Rational design of a GCN4-derived mimetic of interleukin-4. Nature Structural Biology, 1999, 6, 652-656.	9.7	46
88	MUSIC and Aromatic Residues: Amino Acid Type-Selective 1H–15N Correlations, III. Journal of Magnetic Resonance, 2001, 153, 186-192.	2.1	46
89	Studying the Conformation of a Silaffin-Derived Pentalysine Peptide Embedded in Bioinspired Silica using Solution and Dynamic Nuclear Polarization Magic-Angle Spinning NMR. Journal of the American Chemical Society, 2016, 138, 5561-5567.	13.7	46
90	Assignment of amide proton signals by combined evaluation of HN, NN and HNCA MAS-NMR correlation spectra. Journal of Biomolecular NMR, 2003, 25, 217-223.	2.8	45

#	Article	IF	CITATIONS
91	Dynamic Nuclear Polarization Enhanced NMR in the Solid-State. Topics in Current Chemistry, 2013, 338, 181-228.	4.0	45
92	Addressing Protein–Protein Interactions with Small Molecules: A Proâ€Pro Dipeptide Mimic with a PPII Helix Conformation as a Module for the Synthesis of PRDâ€Binding Ligands. Angewandte Chemie - International Edition, 2010, 49, 7111-7115.	13.8	44
93	Discovery of Low-Molecular-Weight Ligands for the AF6 PDZ Domain. Angewandte Chemie - International Edition, 2006, 45, 3790-3795.	13.8	41
94	Largeâ€scale purification of ribosomeâ€nascent chain complexes for biochemical and structural studies. FEBS Letters, 2009, 583, 2407-2413.	2.8	41
95	Computer-assisted assignment of multidimensional NMR spectra of proteins: Application to 3D NOESY-HMQC and TOCSY-HMQC spectra. Journal of Biomolecular NMR, 1993, 3, 245.	2.8	40
96	Characterization of Pheophytin Ground States in Rhodobacter sphaeroides R26 Photosynthetic Reaction Centers from Multispin Pheophytin Enrichment and 2-D 13C MAS NMR Dipolar Correlation Spectroscopy. Biochemistry, 1997, 36, 7513-7519.	2.5	40
97	Solution Structure and Backbone Dynamics of the Trypanosoma cruzi Cysteine Protease Inhibitor Chagasin. Journal of Molecular Biology, 2006, 357, 1511-1521.	4.2	40
98	Solid-State NMR of Matrix Metalloproteinase 12: An Approach Complementary to Solution NMR. ChemBioChem, 2007, 8, 486-489.	2.6	40
99	Azides Derived from Colchicine and their Use in Library Synthesis: a Practical Entry to New Bioactive Derivatives of an Old Natural Drug. ChemMedChem, 2010, 5, 661-665.	3.2	40
100	Intermolecular Proteinâ´'RNA Interactions Revealed by 2D 31Pâ´'15N Magic Angle Spinning Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2010, 132, 3842-3846.	13.7	40
101	Optimal ² H rf Pulses and ² H– ¹³ C Cross-Polarization Methods for Solid-State ² H MAS NMR of Perdeuterated Proteins. Journal of Physical Chemistry Letters, 2011, 2, 1289-1294.	4.6	39
102	A modular toolkit to inhibit proline-rich motif–mediated protein–protein interactions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5011-5016.	7.1	39
103	Assignment of the Nonexchanging Protons of theα-Spectrin SH3 Domain by Two- and Three- Dimensional1H-13C Solid-State Magic-Angle Spinning NMR and Comparison of Solution and Solid-State Proton Chemical Shifts. ChemBioChem, 2001, 2, 906-914.	2.6	38
104	Solid-state magic-angle spinning NMR of membrane proteins and protein–ligand interactions. European Journal of Cell Biology, 2012, 91, 340-348.	3.6	38
105	Aspects of Receptor Binding and Signalling of Interleukin-4 Investigated by Site-directed Mutagenesis and NMR Spectroscopy. Journal of Molecular Biology, 1994, 237, 423-436.	4.2	37
106	Heteronuclear relaxation study of the PH domain of β-spectrin: restriction of loop motions upon binding inositol trisphosphate 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1998, 280, 879-896.	4.2	37
107	Comparative Structural and Energetic Analysis of WW Domain–Peptide Interactions. Journal of Molecular Biology, 2004, 344, 865-881.	4.2	37
108	A MAS NMR Study of the Bacterial ABC Transporter ArtMP. ChemBioChem, 2010, 11, 547-555.	2.6	37

#	Article	IF	CITATIONS
109	Efficiency of Waterâ€Soluble Nitroxide Biradicals for Dynamic Nuclear Polarization in Rotating Solids at 9.4â€T: bcTolâ€M and cyolylâ€TOTAPOL as New Polarizing Agents. Chemistry - A European Journal, 2018, 24, 13485-13494.	3.3	37
110	Structures of proteins in solution derived from homonuclear three-dimensional NOE-NOE nuclear magnetic resonance spectroscopy. High-resolution structure of squash trypsin inhibitor. Journal of the American Chemical Society, 1991, 113, 3196-3198.	13.7	36
111	Crystalline Aluminum Hydroxy Fluorides: Structural Insights Obtained by High Field Solid State NMR and Trend Analyses. Journal of Physical Chemistry C, 2008, 112, 15708-15720.	3.1	36
112	2D13C–13C MAS NMR Correlation Spectroscopy with Mixing by True 1H Spin Diffusion Reveals Long-Range Intermolecular Distance Restraints in Ultra High Magnetic Field. Journal of Magnetic Resonance, 2002, 157, 286-291.	2.1	34
113	Discovery, Structure–Activity Relationship Studies, and Crystal Structure of Nonpeptide Inhibitors Bound to the Shank3 PDZ Domain. ChemMedChem, 2011, 6, 1411-1422.	3.2	34
114	Sensitivity and resolution of proton detected spectra of a deuterated protein at 40 and 60ÂkHz magic-angle-spinning. Journal of Biomolecular NMR, 2015, 61, 161-171.	2.8	34
115	Pigmentation Chemistry and Radicalâ€Based Collagen Degradation in Alkaptonuria and Osteoarthritic Cartilage. Angewandte Chemie - International Edition, 2020, 59, 11937-11942.	13.8	34
116	Application of amino acid type-specific 1H- and 14N-labeling in a 2H-, 15N-labeled background to a 47 kDa homodimer: potential for NMR structure determination of large proteins. Journal of Biomolecular NMR, 1999, 14, 79-83.	2.8	33
117	Structural analysis of a signal peptide inside the ribosome tunnel by DNP MAS NMR. Science Advances, 2016, 2, e1600379.	10.3	33
118	NMR Investigations of the Role of the Sugar Moiety in Glycosylated Recombinant Human Granulocyte-Colony-Stimulating Factor. FEBS Journal, 1997, 247, 386-395.	0.2	32
119	A comparison of NCO and NCA transfer methods for biological solid-state NMR spectroscopy. Journal of Magnetic Resonance, 2012, 214, 81-90.	2.1	32
120	Quantitative study of the effects of chemical shift tolerances and rates of SA cooling on structure calculation from automatically assigned NOE data. Journal of Magnetic Resonance, 2005, 175, 92-102.	2.1	31
121	Three-dimensional deuterium-carbon correlation experiments for high-resolution solid-state MAS NMR spectroscopy of large proteins. Journal of Biomolecular NMR, 2011, 51, 477-485.	2.8	31
122	High-Temperature Dynamic Nuclear Polarization Enhanced Magic-Angle-Spinning NMR. Applied Magnetic Resonance, 2012, 43, 81-90.	1.2	31
123	Multifunctional Benzoxazines Feature Low Polymerization Temperature and Diverse Polymer Structures. Polymers, 2016, 8, 278.	4.5	31
124	Insight into small molecule binding to the neonatal Fc receptor by X-ray crystallography and 100 kHz magic-angle-spinning NMR. PLoS Biology, 2018, 16, e2006192.	5.6	31
125	Dynamic Nuclear Polarization Magic-Angle Spinning Nuclear Magnetic Resonance Combined with Molecular Dynamics Simulations Permits Detection of Order and Disorder in Viral Assemblies. Journal of Physical Chemistry B, 2019, 123, 5048-5058.	2.6	31
126	Fine structure in two-dimensional NMR correlation spectroscopy. Journal of Magnetic Resonance, 1984, 60, 164-169.	0.5	30

#	Article	IF	CITATIONS
127	Temperature dependence of cross-effect dynamic nuclear polarization in rotating solids: advantages of elevated temperatures. Physical Chemistry Chemical Physics, 2016, 18, 30696-30704.	2.8	30
128	A 6 bp Z-DNA hairpin binds two Zα domains from the human RNA editing enzyme ADAR1. FEBS Letters, 1999, 458, 27-31.	2.8	29
129	The Oxidized Subunit B8 from Human Complex I Adopts a Thioredoxin Fold. Structure, 2004, 12, 1645-1654.	3.3	29
130	Towards structure determination of neurotoxin II bound to nicotinic acetylcholine receptor: a solid-state NMR approach. FEBS Letters, 2004, 564, 319-324.	2.8	29
131	SOLARIA: A Protocol for Automated Cross-Peak Assignment and Structure Calculation for Solid-State Magic-Angle Spinning NMR Spectroscopy. Angewandte Chemie - International Edition, 2005, 44, 6151-6154.	13.8	29
132	z-Filtered double-quantum NMR spectra and automated analysis by pattern recognition. Journal of Magnetic Resonance, 1987, 73, 493-511.	0.5	28
133	Purification and characterization of a chicken egg white cystatin variant expressed in an Escherichia coli pIN-III-ompA system. FEBS Journal, 1991, 200, 131-138.	0.2	28
134	Geometrical representation of coherence transfer selection by pulsed field gradients in highâ€resolution nuclear magnetic resonance. Journal of Chemical Physics, 1995, 102, 3089-3098.	3.0	28
135	Biosynthesis of Riboflavin in Archaea Studies on the Mechanism of 3,4-Dihydroxy-2-butanone-4-phosphate Synthase of Methanococcus jannaschii. Journal of Biological Chemistry, 2002, 277, 41410-41416.	3.4	28
136	Amino acid type-selective backbone 1H-15N-correlations for Arg and Lys. Journal of Biomolecular NMR, 2001, 20, 379-384.	2.8	27
137	Relaxation, Equilibrium Oligomerization, and Molecular Symmetry of the VASP (336â~'380) EVH2 Tetramer. Biochemistry, 2002, 41, 11143-11151.	2.5	27
138	13C-Labeled Tyrosine Residues as Local IR Probes for Monitoring Conformational Changes in Peptides and Proteins. Angewandte Chemie - International Edition, 2005, 44, 4631-4635.	13.8	27
139	Interaction of a PDZ Protein Domain with a Synthetic Library of All Human Protein C Termini. Angewandte Chemie - International Edition, 1999, 38, 2000-2004.	13.8	26
140	Triple Resonance Crossâ€Polarization for More Sensitive ¹³ C MAS NMR Spectroscopy of Deuterated Proteins. ChemPhysChem, 2011, 12, 2092-2096.	2.1	26
141	Determination of relaxation pathways in coupled spin systems by two-dimensional NMR exchange spectroscopy with small flip angles. Journal of the American Chemical Society, 1987, 109, 4110-4111.	13.7	25
142	Loop 3 of Short Neurotoxin II is an Additional Interaction Site with Membrane-bound Nicotinic Acetylcholine Receptor as Detected by Solid-state NMR Spectroscopy. Journal of Molecular Biology, 2009, 390, 662-671.	4.2	25
143	Surface Binding of TOTAPOL Assists Structural Investigations of Amyloid Fibrils by Dynamic Nuclear Polarization NMR Spectroscopy. ChemBioChem, 2016, 17, 1308-1311.	2.6	25
144	Practical and theoretical aspects of three-dimensional homonuclear Hartmann-Hahn-nuclear overhauser enhancement spectroscopy of proteins. Journal of Magnetic Resonance, 1989, 83, 450-472.	0.5	24

#	Article	IF	CITATIONS
145	Rapid solid-state NMR of deuterated proteins by interleaved cross-polarization from 1H and 2H nuclei. Journal of Magnetic Resonance, 2012, 214, 324-328.	2.1	24
146	Three-dimensional homonuclear Hartmann-Hahn-nuclear overhauser enhancement spectroscopy in H2O and its application to proteins. Journal of Magnetic Resonance, 1989, 81, 212-216.	0.5	23
147	NMR quality control of fragment libraries for screening. Journal of Biomolecular NMR, 2020, 74, 555-563.	2.8	23
148	Design of N-substituted Peptomer Ligands for EVH1 Domains. Journal of Biological Chemistry, 2003, 278, 36810-36818.	3.4	22
149	Structural Basis for APPTPPPLPP Peptide Recognition by the FBP11WW1 Domain. Journal of Molecular Biology, 2005, 348, 399-408.	4.2	22
150	Low-power polarization transfer between deuterons and spin-1/2 nuclei using adiabatic RESPIRATIONCP in solid-state NMR. Physical Chemistry Chemical Physics, 2014, 16, 2827.	2.8	22
151	Dynamic Nuclear Polarization Provides New Insights into Chromophore Structure in Phytochrome Photoreceptors. Angewandte Chemie - International Edition, 2016, 55, 16017-16020.	13.8	22
152	3D Heteronuclear NMR techniques for carbon-13 in natural abundance. Journal of the American Chemical Society, 1990, 112, 8599-8600.	13.7	21
153	Tools for the automated assignment of high-resolution three-dimensional protein NMR spectra based on pattern recognition techniques. Journal of Biomolecular NMR, 1997, 10, 207-219.	2.8	21
154	A modified strategy for sequence specific assignment of protein NMR spectra based on amino acid type selective experiments. Journal of Biomolecular NMR, 2005, 31, 115-128.	2.8	21
155	On The Potential of Dynamic Nuclear Polarization Enhanced Diamonds in Solid‣tate and Dissolution ¹³ Câ€NMR Spectroscopy. ChemPhysChem, 2016, 17, 2691-2701.	2.1	21
156	Designed nanomolar small-molecule inhibitors of Ena/VASP EVH1 interaction impair invasion and extravasation of breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29684-29690.	7.1	21
157	Spectral editing: selection of methyl groups in multidimensional solid-state magic-angle spinning NMR. Journal of Biomolecular NMR, 2006, 36, 169-177.	2.8	20
158	Double-Nucleus Enhanced Recoupling for Efficient ¹³ C MAS NMR Correlation Spectroscopy of Perdeuterated Proteins. Journal of the American Chemical Society, 2009, 131, 17054-17055.	13.7	20
159	NMR studies on the 46-kDa dimeric protein, 3,4-dihydroxy-2-butanone 4-phosphate synthase, using 2H, 13C, and 15N-labelling. FEBS Journal, 1999, 261, 57-65.	0.2	19
160	Radio frequency assisted homonuclear recoupling – A Floquet description of homonuclear recoupling via surrounding heteronuclei in fully protonated to fully deuterated systems. Journal of Magnetic Resonance, 2011, 209, 207-219.	2.1	19
161	Developing DNP/Solid-State NMR Spectroscopy of Oriented Membranes. Applied Magnetic Resonance, 2012, 43, 91-106.	1.2	19
162	The Structure of the Lichen Macrolide(+)-Aspicilin. Angewandte Chemie International Edition in English, 1985, 24, 987-988.	4.4	18

#	Article	IF	CITATIONS
163	Bridging the gap: A set of selective 1H-15N-correlations to link sequential neighbors of prolines. Journal of Biomolecular NMR, 2000, 17, 331-335.	2.8	18
164	The SEP domain of p47 acts as a reversible competitive inhibitor of cathepsin L. FEBS Letters, 2004, 576, 358-362.	2.8	18
165	A new type of PDZ domain recognition. , 1999, 6, 408-410.		17
166	Practical aspects of high-sensitivity multidimensional 13C MAS NMR spectroscopy of perdeuterated proteins. Journal of Magnetic Resonance, 2012, 217, 77-85.	2.1	17
167	Quadrupleâ€Resonance Magicâ€Angle Spinning NMR Spectroscopy of Deuterated Solid Proteins. Angewandte Chemie - International Edition, 2014, 53, 2438-2442.	13.8	17
168	Fast Heteronuclear 3D NMR Spectroscopy. Angewandte Chemie International Edition in English, 1990, 29, 546-548.	4.4	16
169	Rab7: NMR and kinetics analysis of intact and C-terminal truncated constructs. , 1997, 27, 204-209.		16
170	Backbone and sidechain 1H, 13C and 15N resonance assignments of the Bright/ARID domain from the human JARID1C (SMCX) protein. Biomolecular NMR Assignments, 2008, 2, 9-11.	0.8	16
171	The Mechanism of Denaturation and the Unfolded State of the α-Helical Membrane-Associated Protein Mistic. Journal of the American Chemical Society, 2013, 135, 18884-18891.	13.7	16
172	pHâ€Dependent Protonation of Surface Carboxylate Groups in PsbO Enables Local Buffering and Triggers Structural Changes. ChemBioChem, 2020, 21, 1597-1604.	2.6	16
173	Assignment and Secondary-Structure Determination of Monomeric Bovine Seminal Ribonuclease Employing Computer-Assisted Evaluation of Homonuclear Three-Dimensional 1H-NMR Spectra. FEBS Journal, 1995, 229, 494-502.	0.2	16
174	Structural Characterization of a New Binding Motif and a Novel Binding Mode in Group 2 WW Domains. Journal of Molecular Biology, 2007, 373, 1255-1268.	4.2	15
175	Simplification of Spectra for the Determination of Coupling Constants from Homonuclear Correlated 2D NMR Spectra. Angewandte Chemie International Edition in English, 1985, 24, 690-692.	4.4	14
176	[9] Automated assignment of multidimensional nuclear magnetic resonance spectra. Methods in Enzymology, 1994, 239, 308-318.	1.0	14
177	A Sequential Assignment Procedure for Proteins that have Intermediate Line Widths in MAS NMR Spectra: Amyloid Fibrils of Human CA150.WW2. ChemBioChem, 2008, 9, 1946-1952.	2.6	14
178	Understanding the roles of functional peptides in designing apatite and silica nanomaterials biomimetically using NMR techniques. Current Opinion in Colloid and Interface Science, 2018, 33, 44-52.	7.4	14
179	Collective exchange processes reveal an active site proton cage in bacteriorhodopsin. Communications Biology, 2020, 3, 4.	4.4	14
180	Essential but sparse collagen hydroxylysyl post-translational modifications detected by DNP NMR. Chemical Communications, 2018, 54, 12570-12573.	4.1	13

#	Article	IF	CITATIONS
181	Detection of nucleic acids and other low abundance components in native bone and osteosarcoma extracellular matrix by isotope enrichment and DNP-enhanced NMR. RSC Advances, 2019, 9, 26686-26690.	3.6	13
182	MAS NMR detection of hydrogen bonds for protein secondary structure characterization. Journal of Biomolecular NMR, 2020, 74, 247-256.	2.8	13
183	Removal of zero-quantum interference in NOESY spectra of proteins by utilizing the natural inhomogeneity of the radiofrequency field. Journal of Biomolecular NMR, 1992, 2, 545-556.	2.8	12
184	Proteinstrukturaufkläung mit drei―und vierdimensionaler NMRâ€Spektroskopie. Angewandte Chemie, 1994, 106, 284-300.	2.0	12
185	Improving the refolding yield of interleukin-4 through the optimization of local interactions. Journal of Biotechnology, 2000, 84, 217-230.	3.8	12
186	The solution structure of the SODD BAG domain reveals additional electrostatic interactions in the HSP70 complexes of SODD subfamily BAG domains. FEBS Letters, 2004, 558, 101-106.	2.8	12
187	Longitudinal relaxation pathways in scalar-coupled systems. Journal of Magnetic Resonance, 1989, 81, 13-42.	0.5	11
188	Conformation of 6,7-dimethyl-8-ribityllumazine bound to β-subunits of heavy riboflavin synthase: Transferred nuclear overhauser effect (TrNOE) studies employing ω1-13C-filtered NOESY including a novel technique for zero quantum suppression. Journal of Biomolecular NMR, 1992, 2, 19-32.	2.8	11
189	Application of the soft NOESY technique to the measurement of individual transition probabilities. Journal of Magnetic Resonance, 1989, 81, 220-225.	0.5	10
190	Detection of metabolites in body fluids and biological tissue by a 1d soft cosy technique. Magnetic Resonance in Medicine, 1990, 13, 158-161.	3.0	10
191	Combining SPOT Synthesis and Native Peptide Ligation to Create Large Arrays of WW Protein Domains. Angewandte Chemie, 2003, 115, 1168-1172.	2.0	10
192	J-Deconvolution Using Maximum Entropy Reconstruction Applied to13Câ^'13C Solid-State Cross-Polarization Magic-Angle-Spinning NMR of Proteins. Journal of the American Chemical Society, 2007, 129, 6682-6683.	13.7	10
193	A Novel Subtype of AP-1-binding Motif within the Palmitoylated trans-Golgi Network/Endosomal Accessory Protein Gadkin/γ-BAR. Journal of Biological Chemistry, 2010, 285, 4074-4086.	3.4	10
194	Synthesis of an Array Comprising 837 Variants of the hYAP WW Protein Domain This work was supported by the DFG (INK 16/B1-1), by the Fonds der Chemischen Industrie, and by the UniversitĀĦsklinikum Charité Berlin Angewandte Chemie - International Edition, 2001, 40, 897-900.	13.8	10
195	Schnelle Heterokernâ€3Dâ€NMRâ€Spektroskopie. Angewandte Chemie, 1990, 102, 588-589.	2.0	9
196	Antagonist design through forced electrostatic mismatch. Nature Structural and Molecular Biology, 1994, 1, 674-676.	8.2	9
197	Influence of chemical shift tolerances on NMR structure calculations using ARIA protocols for assigning NOE data. Journal of Biomolecular NMR, 2005, 31, 21-34.	2.8	9
198	The Clip-Segment of the von Willebrand Domain 1 of the BMP Modulator Protein Crossveinless 2 Is Preformed. Molecules, 2013, 18, 11658-11682.	3.8	9

#	Article	IF	CITATIONS
199	Protein resonance assignment by BSH Pâ€based 3D solidâ€state NMR experiments: A practical guide. Magnetic Resonance in Chemistry, 2020, 58, 445-465.	1.9	9
200	NMR fragment screening: tackling protein-protein interaction targets. Current Opinion in Drug Discovery & Development, 2005, 8, 365-73.	1.9	9
201	Anwendung der hochaufgelösten Festkörper-NMR-Spektroskopie zur Bestimmung der Ring-Ketten-Tautomerie. Chemische Berichte, 1984, 117, 702-709.	0.2	8
202	Application of the z-COSY technique with a modified pulse sequence to measurement of coupling constants in macromolecules. Journal of Magnetic Resonance, 1987, 75, 534-539.	0.5	8
203	High yield expression and purification of isotopically labelled human endothelin-1 for use in NMR studies. Protein Expression and Purification, 2006, 48, 253-260.	1.3	8
204	The Structure of MESD45–184 Brings Light into the Mechanism of LDLR Family Folding. Structure, 2011, 19, 337-348.	3.3	8
205	Two-dimensional nuclear magnetic resonance studies of an intercalation complex between the novel semisynthetic anthracycline 3′-deamino-3′-(2-methoxy-4-morpholinyl)-doxorubicin and the hexanucleotide duplex d(CGTACG). Chemico-Biological Interactions, 1992, 85, 117-126.	4.0	7
206	The entire metabolite spectrum of the green alga Scenedesmus obliquus in isotope-labelled form. Phytochemistry, 1999, 50, 215-217.	2.9	7
207	Signal Selection in High-Resolution NMR by Pulsed Field Gradients. Journal of Magnetic Resonance, 1999, 137, 10-24.	2.1	7
208	The solution structure of the core of mesoderm development (MESD), a chaperone for members of the LDLR-family. Journal of Structural and Functional Genomics, 2007, 7, 131-138.	1.2	7
209	Efficient Modeling of Symmetric Protein Aggregates from NMR Data. Angewandte Chemie - International Edition, 2012, 51, 6916-6919.	13.8	7
210	Smallâ€Molecule Inhibitors of AF6 PDZâ€Mediated Protein–Protein Interactions. ChemMedChem, 2014, 9, 1458-1462.	3.2	7
211	In support of the BMRB. Nature Structural and Molecular Biology, 2012, 19, 854-860.	8.2	6
212	A Floquet description of phase alternated sequences for efficient homonuclear recoupling in solid perdeuterated systems. Journal of Magnetic Resonance, 2013, 234, 10-20.	2.1	6
213	The protofilament architecture of a de novo designed coiled coil-based amyloidogenic peptide. Journal of Structural Biology, 2018, 203, 263-272.	2.8	6
214	Similarities and Differences among Protein Dynamics Studied by Variable Temperature Nuclear Magnetic Resonance Relaxation. Journal of Physical Chemistry B, 2021, 125, 2212-2221.	2.6	6
215	A two-dimensional nuclear overhauser enhancement experiment using semiselective soft pulses, and its applications to proteins. Journal of Magnetic Resonance, 1988, 78, 371-375.	0.5	5
216	Small-molecule inhibitors of the PDZ domain of Dishevelled proteins interrupt Wnt signalling. Magnetic Resonance, 2021, 2, 355-374.	1.9	5

#	Article	IF	CITATIONS
217	Multiplet effects in double-quantum spectra. Journal of Magnetic Resonance, 1987, 73, 565-567.	0.5	4
218	Secondary NOE pathways in 2D NOESY spectra of proteins estimated from homonuclear three-dimensional NOE-NOE nuclear magnetic resonance spectroscopy. Journal of Magnetic Resonance, 1992, 97, 511-521.	0.5	4
219	Letter to the Editor:1H,13C and15N Resonance Assignment of the Human Spred2 EVH1 Domain. Journal of Biomolecular NMR, 2004, 29, 435-436.	2.8	4
220	The solution structure of an N-terminally truncated version of the yeast CDC24p PB1 domain shows a different β-sheet topology. FEBS Letters, 2005, 579, 3534-3538.	2.8	4
221	Broadband excitation pulses for highâ€field solidâ€state nuclear magnetic resonance spectroscopy. Magnetic Resonance in Chemistry, 2012, 50, 284-288.	1.9	4
222	Alterations in creatine metabolism observed in experimental autoimmune myocarditis using ex vivo proton magic angle spinning MRS. NMR in Biomedicine, 2015, 28, 1625-1633.	2.8	3
223	Dynamic Nuclear Polarization Provides New Insights into Chromophore Structure in Phytochrome Photoreceptors. Angewandte Chemie, 2016, 128, 16251-16254.	2.0	2
224	An Integrated Pharmacological, Structural, and Genetic Analysis of Extracellular Versus Intracellular ROS Production in Neutrophils. Journal of Molecular Biology, 2022, 434, 167533.	4.2	2
225	Linking Structural Biology With Genome Research. , 2002, , 179-189.		1
226	Letter to the Editor:1H,13C and15N resonance assignments of the C-terminal BRCT domain from human BRCA1. Journal of Biomolecular NMR, 2004, 30, 221-222.	2.8	1
227	1 H, 15 N and 13C assignments of the cysteine protease inhibitor Chagasin from Trypanosoma cruzi. Journal of Biomolecular NMR, 2006, 36, 30-30.	2.8	1
228	Chemical shift assignments and secondary structure prediction for Q4DY78, a conserved kinetoplastid-specific protein from Trypanosoma cruzi. Biomolecular NMR Assignments, 2016, 10, 325-328.	0.8	1
229	On The Potential of Dynamic Nuclear Polarization Enhanced Diamonds in Solid-State and Dissolution13Câ€NMR Spectroscopy. ChemPhysChem, 2016, 17, 2611-2611.	2.1	1
230	Recognition of Proline-Rich Motifs by Protein—Protein-Interaction Domains. ChemInform, 2005, 36, no.	0.0	0
231	Resonance assignment of the RGS domain of human RGS10. Journal of Biomolecular NMR, 2007, 38, 191-191.	2.8	Ο
232	Backbone and sidechain 1H, 13C and 15N resonance assignments of the RGS domain from human RGS14. Biomolecular NMR Assignments, 2007, 1, 95-97.	0.8	0
233	Pigmentierungschemie und radikalbasierter Kollagenabbau bei Alkaptonurie und Arthrose. Angewandte Chemie, 2020, 132, 12035-12040.	2.0	0
234	Innentitelbild: Pigmentierungschemie und radikalbasierter Kollagenabbau bei Alkaptonurie und Arthrose (Angew. Chem. 29/2020). Angewandte Chemie, 2020, 132, 11770-11770.	2.0	0

#	Article	IF	CITATIONS
235	NMR structure and dynamics of Q4DY78, a conserved kinetoplasid-specific protein from Trypanosoma cruzi. Journal of Structural Biology, 2021, 213, 107715.	2.8	0
236	How solvent-free crosslinking conditions alter the chemistry and topology of hemiketal based polymer networks. Polymer, 2021, 229, 123986.	3.8	0
237	Structural insight into protein-aided bacterial biofilm formation. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, e206-e206.	0.1	0
238	Mapping and characterization of epitopes recognized by WW domains using cellulose-bound peptide libraries. , 2002, , 551-552.		0