Quirino Balzano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4494985/publications.pdf

Version: 2024-02-01

840776 713466 30 461 11 21 citations h-index g-index papers 30 30 30 400 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	QUANTITATIVE EVALUATIONS OF MECHANISMS OF RADIOFREQUENCY INTERACTIONS WITH BIOLOGICAL MOLECULES AND PROCESSES. Health Physics, 2008, 95, 365-396.	0.5	104
2	Tissue models for RF exposure evaluation at frequencies above 6 GHz. Bioelectromagnetics, 2018, 39, 173-189.	1.6	65
3	Thermal Modeling for the Next Generation of Radiofrequency Exposure Limits. Health Physics, 2017, 113, 41-53.	0.5	45
4	Surface Wave Based Underwater Radio Communication. IEEE Antennas and Wireless Propagation Letters, 2018, 17, 2503-2507.	4.0	30
5	Thermal Analysis of Averaging Times in Radio-Frequency Exposure Limits Above 1 GHz. IEEE Access, 2018, 6, 74536-74546.	4.2	28
6	Modeling Tissue Heating From Exposure to Radiofrequency Energy and Relevance of Tissue Heating to Exposure Limits: Heating Factor. Health Physics, 2018, 115, 295-307.	0.5	28
7	Theoretical and numerical assessment of maximally allowable power-density averaging area for conservative electromagnetic exposure assessment above 6 GHz. Bioelectromagnetics, 2018, 39, 617-630.	1.6	19
8	A doubly resonant cavity for detection of RF demodulation by living cells. Bioelectromagnetics, 2008, 29, 81-91.	1.6	15
9	The International Intercomparison of SAR Measurements on Cellular Telephones. IEEE Transactions on Electromagnetic Compatibility, 2009, 51, 210-216.	2.2	15
10	EXPOSURE ASSESSMENT OF PORTABLE WIRELESS DEVICES ABOVE 6 GHz. Radiation Protection Dosimetry, 2019, 183, 489-496.	0.8	13
11	International Intercomparison of Specific Absorption Rates in a Flat Absorbing Phantom in the Near-Field of Dipole Antennas. IEEE Transactions on Electromagnetic Compatibility, 2006, 48, 579-588.	2.2	11
12	Mechanisms of RF Electromagnetic Field Absorption in Human Hands and Fingers. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 2267-2276.	4.6	11
13	In vitro exposure: Linear and nonâ€linear thermodynamic events in Petri dishes. Bioelectromagnetics, 2015, 36, 527-537.	1.6	10
14	Transient Thermal Responses of Skin to Pulsed Millimeter Waves. IEEE Access, 2020, 8, 130239-130251.	4.2	10
15	Development of Broadband Underwater Radio Communication for Application in Unmanned Underwater Vehicles. Journal of Marine Science and Engineering, 2020, 8, 370.	2.6	9
16	Time-temperature Thresholds and Safety Factors for Thermal Hazards from Radiofrequency Energy above 6 GHz. Health Physics, 2021, 121, 234-247.	0.5	7
17	916 MHz F-Inverted Compact Antenna (FICA) for Highly Integrated Transceivers. IEEE Antennas and Wireless Propagation Letters, 2009, 8, 181-184.	4.0	6
18	Three Quarters of a Century of Research on RF Exposure Assessment and Dosimetry—What Have We Learned?. International Journal of Environmental Research and Public Health, 2022, 19, 2067.	2.6	6

#	Article	IF	CITATIONS
19	Near-field radiofrequency electromagnetic exposure assessment. Electromagnetic Biology and Medicine, 2015, 34, 180-182.	1.4	5
20	Compact, Low Power Wireless Sensor Network System for Line Crossing Recognition., 2007,,.		4
21	Has Electromagnetic Energy in the Band 0.1–100 GHz Useful Medical Applications? A Review of Mechanisms and Biological Database Offers Dim Prospects. IEEE Transactions on Plasma Science, 2008, 36, 1638-1649.	1.3	4
22	The problems of mobile communication electromagnetic field exposure assessment today and tomorrow. Meditsina Truda I Promyshlennaia Ekologiia, 2020, 60, 597-599.	0.6	4
23	Comments on Betzalel et al. â€∞The human skin as a sub-THz receiver–does 5G pose a danger to it or not?― Environmental Research 163 (2018): 208–216 Environmental Research, 2020, 183, 109008.	7.5	3
24	Comments on Martin Pall, "Millimeter (MM) wave and microwave frequency radiation produce deeply penetrating effects: the biology and the physicsâ€, Rev Environ Health 2021;37:247–58 Reviews on Environmental Health, 2022, 37, 291-293.	2.4	3
25	Thermal dosimetry and thermodynamics in test tubes and Petri dishes. , 2012, , .		2
26	Effects of 171 MHz Lowâ€Intensity Electromagnetic Field on Glucocorticoid and Mineral Corticoid Activity of the Adrenal Glands of Rats. Bioelectromagnetics, 2019, 40, 578-587.	1.6	2
27	Field and Temperature Gradients from Short Conductors in a Dissipative Medium. International Journal of Antennas and Propagation, 2007, 2007, 1-8.	1.2	1
28	Antenna and low noise amplifier (LNA) co-design. , 2009, , .		1
29	Comment on "Possible induced enhancement of dispersion forces by cellular phones―by B. E. Sernelius, Phys. Chem. Chem. Phys., 2004,6, 1363. Physical Chemistry Chemical Physics, 2004, 6, 3917-3917.	2.8	0
30	Calibration model for detection of potential demodulating behaviour in biological media exposed to RF energy. IET Science, Measurement and Technology, 2017, 11, 900-906.	1.6	0