Aarne Hovi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4494857/publications.pdf Version: 2024-02-01

AADNE HOVI

#	Article	IF	CITATIONS
1	Assessment of a photon recollision probability based forest reflectance model in European boreal and temperate forests. Remote Sensing of Environment, 2022, 269, 112804.	11.0	9
2	A spectral analysis of stem bark for boreal and temperate tree species. Ecology and Evolution, 2022, 12, e8718.	1.9	6
3	Crown level clumping in Norway spruce from terrestrial laser scanning measurements. Agricultural and Forest Meteorology, 2021, 296, 108238.	4.8	9
4	Contribution of woody elements to tree level reflectance in boreal forests. Silva Fennica, 2021, 55, .	1.3	7
5	Multi-angular reflectance spectra of small single trees. Remote Sensing of Environment, 2021, 255, 112302.	11.0	9
6	A dataset composed of multiangular spectral libraries and auxiliary data at tree, leaf, needle, and bark level for three common European tree species. Data in Brief, 2021, 35, 106820.	1.0	4
7	Empirical validation of photon recollision probability in single crowns of tree seedlings. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 169, 57-72.	11.1	7
8	Direct estimation of photon recollision probability using terrestrial laser scanning. Remote Sensing of Environment, 2020, 247, 111932.	11.0	5
9	Spectral composition of shortwave radiation transmitted by forest canopies. Trees - Structure and Function, 2020, 34, 1499-1506.	1.9	9
10	Quantitative analysis of the links between forest structure and land surface albedo on a global scale. Remote Sensing of Environment, 2020, 246, 111854.	11.0	33
11	Evaluating the performance of a double integrating sphere in measurement of reflectance, transmittance, and albedo of coniferous needles. Silva Fennica, 2020, 54, .	1.3	5
12	Multiangular spectra of tree bark for common boreal tree species in Europe. Silva Fennica, 2020, 54, .	1.3	5
13	Seasonal dynamics of albedo across European boreal forests: Analysis of MODIS albedo and structural metrics from airborne LiDAR. Remote Sensing of Environment, 2019, 224, 365-381.	11.0	22
14	Temporal dynamics of albedo and climate in the sparse forests of Zagros. Science of the Total Environment, 2019, 663, 596-609.	8.0	13
15	Evaluation of Accuracy and Practical Applicability of Methods for Measuring Leaf Reflectance and Transmittance Spectra. Remote Sensing, 2018, 10, 25.	4.0	18
16	Spectral Properties of Coniferous Forests: A Review of In Situ and Laboratory Measurements. Remote Sensing, 2018, 10, 207.	4.0	86
17	Seasonality of albedo and FAPAR in a boreal forest. Agricultural and Forest Meteorology, 2017, 247, 331-342.	4.8	12
18	Tree species classification using within crown localization of waveform LiDAR attributes. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 133, 142-156.	11.1	30

Aarne Hovi

#	Article	IF	CITATIONS
19	Theoretical algorithm and application of a double-integrating sphere system for measuring leaf transmittance and reflectance spectra. Applied Optics, 2017, 56, 563.	1.8	11
20	A spectral analysis of 25 boreal tree species. Silva Fennica, 2017, 51, .	1.3	63
21	Quantifying the missing link between forest albedo and productivity in the boreal zone. Biogeosciences, 2016, 13, 6015-6030.	3.3	18
22	The accuracy of large-area forest canopy cover estimation using Landsat in boreal region. International Journal of Applied Earth Observation and Geoinformation, 2016, 53, 118-127.	2.8	28
23	LiDAR waveform features for tree species classification and their sensitivity to tree- and acquisition related parameters. Remote Sensing of Environment, 2016, 173, 224-237.	11.0	88
24	Real and simulated waveform-recording LiDAR data in juvenile boreal forest vegetation. Remote Sensing of Environment, 2014, 140, 665-678.	11.0	27
25	Backscattering of individual LiDAR pulses from forest canopies explained by photogrammetrically derived vegetation structure. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 83, 81-93.	11.1	19
26	Evaluation of simulated bands in airborne optical sensors for tree species identification. Remote Sensing of Environment, 2013, 138, 27-37.	11.0	23
27	Estimation of tree crown volume from airborne lidar data using computational geometry. International Journal of Remote Sensing, 2013, 34, 7236-7248.	2.9	46
28	Understory trees in airborne LiDAR data — Selective mapping due to transmission losses and echo-triggering mechanisms. Remote Sensing of Environment, 2012, 119, 92-104.	11.0	72
29	Mapping of snow-damaged trees based on bitemporal airborne LiDAR data. European Journal of Forest Research, 2012, 131, 1217-1228.	2.5	32