Keiji Ohtsuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4494546/publications.pdf

Version: 2024-02-01

66	1,819	17 h-index	37
papers	citations		g-index
67	67	67	968
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Accretional Evolution of a Planetesimal Swarm. Icarus, 1997, 128, 429-455.	2.5	298
2	DISTRIBUTION OF ACCRETING GAS AND ANGULAR MOMENTUM ONTO CIRCUMPLANETARY DISKS. Astrophysical Journal, 2012, 747, 47.	4.5	170
3	Evolution of Planetesimal Velocities Based on Three-Body Orbital Integrations and Growth of Protoplanets. Icarus, 2002, 155, 436-453.	2.5	136
4	Capture Probability of Colliding Planetesimals: Dynamical Constraints on Accretion of Planets, Satellites, and Ring Particles. Icarus, 1993, 106, 228-246.	2.5	73
5	Ring formation around giant planets by tidal disruption of a single passing large Kuiper belt object. Icarus, 2017, 282, 195-213.	2.5	61
6	Evolution of Particle Velocity Dispersion in a Circumplanetary Disk Due to Inelastic Collisions and Gravitational Interactions. Icarus, 1999, 137, 152-177.	2.5	58
7	Local [ITAL]N[/ITAL]-Body Simulations for the Distribution and Evolution of Particle Velocities in Planetary Rings. Astronomical Journal, 2000, 119, 403-416.	4.7	51
8	FORMATION OF CENTAURS' RINGS THROUGH THEIR PARTIAL TIDAL DISRUPTION DURING PLANETARY ENCOUNTERS. Astrophysical Journal Letters, 2016, 828, L8.	8.3	50
9	Planetary Rotation by Accretion of Planetesimals with Nonuniform Spatial Distribution Formed by the Planet's Gravitational Perturbation. Icarus, 1998, 131, 393-420.	2.5	44
10	CAPTURE OF PLANETESIMALS BY GAS DRAG FROM CIRCUMPLANETARY DISKS. Astronomical Journal, 2013, 146, 140.	4.7	43
11	Growth of the earth in nebular gas. Icarus, 1988, 75, 552-565.	2.5	38
12	Accretion rates of planetesimals by protoplanets embedded in nebular gas. Icarus, 2010, 205, 658-673.	2.5	38
13	TEMPORARY CAPTURE OF PLANETESIMALS BY A PLANET FROM THEIR HELIOCENTRIC ORBITS. Astronomical Journal, 2011, 142, 200.	4.7	36
14	Dynamics of Saturn's Dense Rings. , 2009, , 413-458.		34
15	Distribution of Captured Planetesimals in Circumplanetary Gas Disks and Implications for Accretion of Regular Satellites. Astrophysical Journal, 2017, 839, 66.	4.5	33
16	Artificial acceleration in accumulation due to coarse mass-coordinate divisions in numerical simulation. Icarus, 1990, 83, 205-215.	2.5	32
17	Evolution of random velocities of planetesimals in the course of accretion. lcarus, 1992, 98, 20-27.	2.5	32
18	Temporary capture of planetesimals by a giant planet and implication for the origin of irregular satellites. Monthly Notices of the Royal Astronomical Society, 2013, 431, 1709-1718.	4.4	31

#	Article	IF	CITATIONS
19	ACCRETION RATES OF MOONLETS EMBEDDED IN CIRCUMPLANETARY PARTICLE DISKS. Astronomical Journal, 2013, 146, 25.	4.7	28
20	FORMATION OF MULTIPLE-SATELLITE SYSTEMS FROM LOW-MASS CIRCUMPLANETARY PARTICLE DISKS. Astrophysical Journal, 2015, 799, 40.	4.5	28
21	ORBITAL CHARACTERISTICS OF PLANETESIMALS CAPTURED BY CIRCUMPLANETARY GAS DISKS. Astronomical Journal, 2016, 151, 140.	4.7	28
22	CAPTURE OF PLANETESIMALS BY WANING CIRCUMPLANETARY GAS DISKS. Astrophysical Journal, 2016, 820, 128.	4.5	26
23	Runaway planetary growth with collision rate in the solar gravitational field. Icarus, 1990, 85, 499-511.	2.5	24
24	High-accuracy statistical simulation of planetary accretion: I. Test of the accuracy by comparison with the solution to the stochastic coagulation equation. Earth, Planets and Space, 1999, 51, 205-217.	2.5	23
25	COLLISIONAL DISRUPTION OF GRAVITATIONAL AGGREGATES IN THE TIDAL ENVIRONMENT. Astrophysical Journal, 2014, 787, 56.	4.5	21
26	Saturn's F ring and shepherd satellites a natural outcome of satellite system formation. Nature Geoscience, 2015, 8, 686-689.	12.9	20
27	LocalN-Body Simulations for the Rotation Rates of Particles in Planetary Rings. Astronomical Journal, 2005, 130, 1302-1310.	4.7	18
28	A multilayer model for thermal infrared emission of Saturn's rings: Basic formulation and implications for Earth-based observations. Icarus, 2009, 201, 634-654.	2.5	18
29	Rotation rate and velocity dispersion of planetary ring particles with size distribution II. Numerical simulation for gravitating particles. Icarus, 2006, 183, 384-395.	2.5	17
30	A multilayer model for thermal infrared emission of Saturn's rings. III: Thermal inertia inferred from Cassini CIRS. Icarus, 2011, 215, 107-127.	2.5	17
31	Rotation Rates of Particles in Saturn's Rings. Astrophysical Journal, 2005, 626, L61-L64.	4.5	16
32	Mass dispersal and angular momentum transfer during collisions between rubble-pile asteroids. II. Effects of initial rotation and spin-down through disruptive collisions. Icarus, 2009, 202, 514-524.	2.5	16
33	A multilayer model for thermal infrared emission of Saturn's rings II: Albedo, spins, and vertical mixing of ring particles inferred from Cassini CIRS. Icarus, 2010, 210, 330-345.	2.5	16
34	Origin and Evolution of Terrestrial Planet Rotation. , 2000, , 101-112.		16
35	Dynamical behaviour of planetesimals temporarily captured by a planet from heliocentric orbits: basic formulation and the case of low random velocity. Monthly Notices of the Royal Astronomical Society, 2007, 377, 1763-1771.	4.4	15
36	VISCOSITY IN PLANETARY RINGS WITH SPINNING SELF-GRAVITATING PARTICLES. Astronomical Journal, 2012, 143, 110.	4.7	14

#	Article	IF	CITATIONS
37	Equilibrium velocities in planetary rings with low optical depth. Icarus, 1992, 95, 265-282.	2.5	13
38	A new formulation of the viscosity in planetary rings. Icarus, 2003, 161, 144-156.	2.5	12
39	On the rotation of a moonlet embedded in planetary rings. Icarus, 2004, 172, 432-445.	2.5	12
40	A comparative study of size frequency distributions of Jupiter Trojans, Hildas and main belt asteroids: A clue to planet migration history. Planetary and Space Science, 2019, 169, 78-85.	1.7	12
41	Orbital Stability of Protoplanetary Systems in Nebular Gas and Implications for Terrestrial Planet Formation. Astronomical Journal, 2006, 131, 3093-3099.	4.7	11
42	Mass dispersal and angular momentum transfer during collisions between rubble-pile asteroids. Icarus, 2007, 189, 256-273.	2.5	11
43	FOSSIL. I. The Spin Rate Limit of Jupiter Trojans. Planetary Science Journal, 2021, 2, 191.	3.6	11
44	Kinetic behavior of planetesimals revolving around the sun. Advances in Space Research, 1990, 10, 105-108.	2.6	10
45	Spin rates of fast-rotating asteroids and fragments in impact disruption. Icarus, 2009, 200, 694-697.	2.5	10
46	Multi-band photometry of trans-Neptunian objects in the Subaru Hyper Suprime-Cam survey. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	10
47	Chapter 20. Accumulation Process of Planetesimals to the Planets. Progress of Theoretical Physics Supplement, 1988, 96, 239-255.	0.1	9
48	Radial diffusion rate of planetesimals due to gravitational encounters. Icarus, 2003, 162, 47-58.	2.5	8
49	Formulation and analytic calculation for the spin angular momentum of a moonlet due to inelastic collisions of ring particles. Earth, Planets and Space, 2004, 56, 909-919.	2.5	8
50	GRAVITATIONAL ACCRETION OF PARTICLES ONTO MOONLETS EMBEDDED IN SATURN's RINGS. Astrophysical Journal, 2014, 797, 93.	4.5	8
51	A global system of furrows on Ganymede indicative of their creation in a single impact event. Icarus, 2020, 352, 113941.	2.5	8
52	Rotation rate and velocity dispersion of planetary ring particles with size distribution. Icarus, 2006, 183, 373-383.	2.5	7
53	Delivery of Pebbles from the Protoplanetary Disk into Circumplanetary Disks. Astrophysical Journal, 2020, 903, 98.	4.5	6
54	Size Distribution of Small Jupiter Trojans in the L ₅ Swarm*. Astronomical Journal, 2022, 163, 213.	4.7	6

#	Article	IF	CITATIONS
55	Collisions and Gravitational Interactions between Particles in Planetary Rings. Progress of Theoretical Physics Supplement, 2012, 195, 29-47.	0.1	5
56	Size Distributions of Bluish and Reddish Small Main-belt Asteroids Obtained by Subaru/Hyper Suprime-Cam*. Astronomical Journal, 2021, 162, 280.	4.7	4
57	Dust release from cold ring particles as a mechanism of spoke formation in Saturn's rings. Icarus, 2022, 378, 114920.	2.5	3
58	FOSSIL. II. The Rotation Periods of Small-sized Hilda Asteroids. Astrophysical Journal, Supplement Series, 2022, 259, 7.	7.7	3
59	Chapter 16. Gravitational Scattering between Planetesimals and Their Statistical Behavior. Progress of Theoretical Physics Supplement, 1988, 96, 175-195.	0.1	2
60	Evaluation of collision and stirring rates in circumplanetary particle disks based on three-body orbital integrations. Planetary and Space Science, 2000, 48, 553-568.	1.7	2
61	Size of the smallest particles in Saturn's rings. Icarus, 2020, 344, 113346.	2.5	2
62	Chapter 14. Dissipation of the Solar Nebula. Progress of Theoretical Physics Supplement, 1988, 96, 161-166.	0.1	1
63	Colors of Centaurs observed by the Subaru/Hyper Suprime-Cam and implications for their origin. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	1
64	Disruption of Saturn's ring particles by thermal stress. Icarus, 2022, 378, 114919.	2.5	1
65	Semi-Analytic Formulas of Velocity Stirring Rates in Particle Disks. Symposium - International Astronomical Union, 2004, 202, 229-231.	0.1	O
66	On the isotopic fractionation of terrestrial xenon by gravitational separation inside porous planetesimals with size distribution. Geochemical Journal, 2004, 38, 455-460.	1.0	0