
Shawn R Lockhart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4494439/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Laboratoryâ€based surveillance of <i>Candida auris</i> in Colombia, 2016–2020. Mycoses, 2022, 65, 222-225.	4.0	12
2	Collateral consequences of agricultural fungicides on pathogenic yeasts: A One Health perspective to tackle azole resistance. Mycoses, 2022, 65, 303-311.	4.0	18
3	Tools for Detecting a "Superbug― Updates on Candida auris Testing. Journal of Clinical Microbiology, 2022, 60, jcm0080821.	3.9	21
4	Bloodstream Infections With <i>Candida auris</i> Among Children in Colombia: Clinical Characteristics and Outcomes of 34 Cases. Journal of the Pediatric Infectious Diseases Society, 2021, 10, 151-154.	1.3	18
5	Identification of <i>Candida auris</i> and related species by multiplex PCR based on unique GPI proteinâ€encoding genes. Mycoses, 2021, 64, 194-202.	4.0	11
6	Performance evaluation of fungal DNA PCR amplification from formalinâ€fixed paraffinâ€embedded tissue for diagnosis: Experience of a tertiary reference laboratory. Mycoses, 2021, 64, 603-611.	4.0	13
7	Categorizing Susceptibility of Clinical Isolates of <i>Candida auris</i> to Amphotericin B, Caspofungin, and Fluconazole by Use of the CLSI M44-A2 Disk Diffusion Method. Journal of Clinical Microbiology, 2021, 59, .	3.9	6
8	Antifungal activity of nikkomycin Z against <i>Candida auris</i> . Journal of Antimicrobial Chemotherapy, 2021, 76, 1495-1497.	3.0	17
9	Molecular Techniques for Genus and Species Determination of Fungi From Fresh and Paraffin-Embedded Formalin-Fixed Tissue in the Revised EORTC/MSGERC Definitions of Invasive Fungal Infection. Clinical Infectious Diseases, 2021, 72, S109-S113.	5.8	24
10	In Vitro Activity of Novel Antifungal Olorofim against Filamentous Fungi and Comparison to Eight Other Antifungal Agents. Journal of Fungi (Basel, Switzerland), 2021, 7, 378.	3.5	19
11	Recognition of Diagnostic Gaps for Laboratory Diagnosis of Fungal Diseases: Expert Opinion from the Fungal Diagnostics Laboratories Consortium (FDLC). Journal of Clinical Microbiology, 2021, 59, e0178420.	3.9	38
12	Treatment Practices for Adults With Candidemia at 9 Active Surveillance Sites—United States, 2017–2018. Clinical Infectious Diseases, 2021, 73, 1609-1616.	5.8	10
13	<i>Notes from the Field:</i> Transmission of Pan-Resistant and Echinocandin-Resistant <i>Candida auris</i> in Health Care Facilities ― Texas and the District of Columbia, January–April 2021. Morbidity and Mortality Weekly Report, 2021, 70, 1022-1023.	15.1	62
14	Genomic Diversity of Azole-Resistant Aspergillus fumigatus in the United States. MBio, 2021, 12, e0180321.	4.1	17
15	Donorâ€derived Cryptococcus gattii sensu stricto infection in two kidney transplant recipients, southeastern United States. American Journal of Transplantation, 2021, 21, 3780-3784.	4.7	3
16	Candida auris: An Emerging Yeast Pathogen Posing Distinct Challenges for Laboratory Diagnostics, Treatment, and Infection Prevention. Archives of Pathology and Laboratory Medicine, 2020, 144, 107-114.	2.5	30
17	Azole-Resistant Aspergillus fumigatus: What You Need To Know. Clinical Microbiology Newsletter, 2020, 42, 1-6.	0.7	11
18	Revision and Update of the Consensus Definitions of Invasive Fungal Disease From the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clinical Infectious Diseases, 2020, 71, 1367-1376.	5.8	1,429

#	Article	IF	CITATIONS
19	Case–Case Comparison of Candida auris Versus Other Candida Species Bloodstream Infections: Results of an Outbreak Investigation in Colombia. Mycopathologia, 2020, 185, 917-923.	3.1	11
20	Ibrexafungerp: A Novel Oral Triterpenoid Antifungal in Development for the Treatment of Candida auris Infections. Antibiotics, 2020, 9, 539.	3.7	38
21	Antifungal Susceptibility Testing: Current Approaches. Clinical Microbiology Reviews, 2020, 33, .	13.6	138
22	Mutations in <i>TAC1B</i> : a Novel Genetic Determinant of Clinical Fluconazole Resistance in Candida auris. MBio, 2020, 11, .	4.1	101
23	Prevalence of Candida auris in Canadian acute care hospitals among at-risk patients, 2018. Antimicrobial Resistance and Infection Control, 2020, 9, 82.	4.1	7
24	Innovative Approaches for Histoplasma Detection. Current Fungal Infection Reports, 2020, 14, 310-316.	2.6	3
25	Understanding the Emergence of Multidrug-Resistant Candida: Using Whole-Genome Sequencing to Describe the Population Structure of Candida haemulonii Species Complex. Frontiers in Genetics, 2020, 11, 554.	2.3	24
26	Fluconazoleâ€resistant <i>Candida parapsilosis</i> strains with a Y132F substitution in the <i>ERG11</i> gene causing invasive infections in a neonatal unit, South Africa. Mycoses, 2020, 63, 471-477.	4.0	36
27	Tracing the Evolutionary History and Global Expansion of Candida auris Using Population Genomic Analyses. MBio, 2020, 11, .	4.1	224
28	Acrophialophora levis brain abscess in a kidney transplant patient: A case report and review of the literature. Medical Mycology Case Reports, 2020, 28, 12-15.	1.3	6
29	<i>Rhizopus microsporus</i> Infections Associated with Surgical Procedures, Argentina, 2006–2014. Emerging Infectious Diseases, 2020, 26, 937-944.	4.3	11
30	Molecular Epidemiology of Candida auris in Colombia Reveals a Highly Related, Countrywide Colonization With Regional Patterns in Amphotericin B Resistance. Clinical Infectious Diseases, 2019, 68, 15-21.	5.8	132
31	The NDV-3A vaccine protects mice from multidrug resistant Candida auris infection. PLoS Pathogens, 2019, 15, e1007460.	4.7	82
32	Identification of Candida auris by Use of the Updated Vitek 2 Yeast Identification System, Version 8.01: a Multilaboratory Evaluation Study. Journal of Clinical Microbiology, 2019, 57, .	3.9	47
33	Molecular typing of clinical and environmental isolates of <i>Cryptococcus gattii</i> species complex from southern California, United States. Mycoses, 2019, 62, 1029-1034.	4.0	14
34	On the Origins of a Species: What Might Explain the Rise of Candida auris?. Journal of Fungi (Basel,) Tj ETQq0 0 () rgBT /Ov	erlock 10 Tf 5
35	<i>In Vitro</i> Activity of Ibrexafungerp, a Novel Glucan Synthase Inhibitor against Candida glabrata Isolates with <i>FKS</i> Mutations. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	37

³⁶Hospital-Associated Multicenter Outbreak of Emerging Fungus <i>Candida auris</i>Colombia, 2016.4.35353

#	Article	IF	CITATIONS
37	Candida auris and multidrug resistance: Defining the new normal. Fungal Genetics and Biology, 2019, 131, 103243.	2.1	112
38	ls This Zebra Really a Zebra? The Challenge of Diagnosing Rare Fungal Infections in Veterinary Pathology. Veterinary Pathology, 2019, 56, 510-511.	1.7	2
39	Antifungal Susceptibility Testing: The Times They Are A-Changing. Clinical Microbiology Newsletter, 2019, 41, 85-90.	0.7	2
40	Emerging and reemerging fungal infections. Seminars in Diagnostic Pathology, 2019, 36, 177-181.	1.5	100
41	Genotypes and population genetics of cryptococcus neoformans and cryptococcus gattii species complexes in Europe and the mediterranean area. Fungal Genetics and Biology, 2019, 129, 16-29.	2.1	37
42	A highâ€ŧhroughput and rapid method for accurate identification of emerging multidrugâ€resistant Candida auris. Mycoses, 2019, 62, 513-518.	4.0	32
43	Candida auris: A Review of Recommendations for Detection and Control in Healthcare Settings. Journal of Fungi (Basel, Switzerland), 2019, 5, 111.	3.5	64
44	The Fungal Cyp51-Specific Inhibitor VT-1598 Demonstrates <i>In Vitro</i> and <i>In Vivo</i> Activity against Candida auris. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	53
45	Population-Based Active Surveillance for Culture-Confirmed Candidemia — Four Sites, United States, 2012–2016. MMWR Surveillance Summaries, 2019, 68, 1-15.	34.6	111
46	Surveillance for azoles resistance in <i>Aspergillus</i> spp. highlights a high number of amphotericin Bâ€resistant isolates. Mycoses, 2018, 61, 360-365.	4.0	42
47	Neonatal and Pediatric Candidemia: Results From Population-Based Active Laboratory Surveillance in Four US Locations, 2009–2015. Journal of the Pediatric Infectious Diseases Society, 2018, 7, e78-e85.	1.3	44
48	Dating the Cryptococcus gattii Dispersal to the North American Pacific Northwest. MSphere, 2018, 3, .	2.9	20
49	Echinocandin resistance among Candida isolates at an academic medical centre 2005–15: analysis of trends and outcomes. Journal of Antimicrobial Chemotherapy, 2018, 73, 1677-1680.	3.0	13
50	Emerging Multidrug-Resistant Candida duobushaemulonii Infections in Panama Hospitals: Importance of Laboratory Surveillance and Accurate Identification. Journal of Clinical Microbiology, 2018, 56, .	3.9	22
51	Talaromycosis (Penicilliosis) in a Cynomolgus Macaque. Veterinary Pathology, 2018, 55, 591-594.	1.7	4
52	Changes in the epidemiological landscape of invasive candidiasis. Journal of Antimicrobial Chemotherapy, 2018, 73, i4-i13.	3.0	349
53	Two cases of fungal keratitis caused by Metarhizium anisopliae. Medical Mycology Case Reports, 2018, 21, 8-11.	1.3	6
54	Saksenaea vasiformis Orbital Cellulitis in an Immunocompetent Child Treated With Posaconazole. Journal of the Pediatric Infectious Diseases Society, 2018, 7, e169-e171.	1.3	8

#	Article	IF	CITATIONS
55	Triazole resistance surveillance in Aspergillus fumigatus. Medical Mycology, 2018, 56, S83-S92.	0.7	114
56	Detection of TR ₃₄ /L98H <i>CYP51A</i> Mutation through Passive Surveillance for Azole-Resistant Aspergillus fumigatus in the United States from 2015 to 2017. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	40
57	Molecular characterization of C ryptococcus neoformans and C ryptococcus gattii from environmental sources and genetic comparison with clinical isolates in Apulia, Italy. Environmental Research, 2018, 160, 347-352.	7.5	24
58	Isolation of <i>Candida auris</i> from 9 patients in Central America: Importance of accurate diagnosis and susceptibility testing. Mycoses, 2018, 61, 44-47.	4.0	74
59	Activity of CD101, a long-acting echinocandin, against clinical isolates of Candida auris. Diagnostic Microbiology and Infectious Disease, 2018, 90, 196-197.	1.8	82
60	Notes from the Field: Surveillance for Candida auris — Colombia, September 2016–May 2017. Morbidity and Mortality Weekly Report, 2018, 67, 459-460.	15.1	30
61	Multiple introductions and subsequent transmission of multidrug-resistant Candida auris in the USA: a molecular epidemiological survey. Lancet Infectious Diseases, The, 2018, 18, 1377-1384.	9.1	204
62	Timing the Origin ofCryptococcus gattiisensu stricto, Southeastern United States. Emerging Infectious Diseases, 2018, 24, 2095-2097.	4.3	4
63	Flucytosine resistance in <i>Cryptococcus gattii</i> is indirectly mediated by the FCY2-FCY1-FUR1 pathway. Medical Mycology, 2018, 56, 857-867.	0.7	18
64	Ceragenins are active against drug-resistant Candida auris clinical isolates in planktonic and biofilm forms. Journal of Antimicrobial Chemotherapy, 2018, 73, 1537-1545.	3.0	24
65	Activity of novel antifungal compound APX001A against a large collection of Candida auris. Journal of Antimicrobial Chemotherapy, 2018, 73, 3060-3062.	3.0	47
66	Methodologies for in vitro and in vivo evaluation of efficacy of antifungal and antibiofilm agents and surface coatings against fungal biofilms. Microbial Cell, 2018, 5, 300-326.	3.2	81
67	Multidrug-Resistant <i>Aspergillus fumigatus</i> Carrying Mutations Linked to Environmental Fungicide Exposure — Three States, 2010–2017. Morbidity and Mortality Weekly Report, 2018, 67, 1064-1067.	15.1	38
68	Detection of neonatal unit clusters of <i>Candida parapsilosis</i> fungaemia by microsatellite genotyping: Results from laboratoryâ€based sentinel surveillance, South Africa, 2009â€2010. Mycoses, 2017, 60, 320-327.	4.0	32
69	Establishment and Use of Epidemiological Cutoff Values for Molds and Yeasts by Use of the Clinical and Laboratory Standards Institute M57 Standard. Journal of Clinical Microbiology, 2017, 55, 1262-1268.	3.9	55
70	<i>In Vitro</i> Activity of a Novel Glucan Synthase Inhibitor, SCY-078, against Clinical Isolates of Candida auris. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	80
71	Candida auris for the Clinical Microbiology Laboratory: Not Your Grandfather's Candida Species. Clinical Microbiology Newsletter, 2017, 39, 99-103.	0.7	86
72	Isolation of azole-resistant Aspergillus fumigatus from the environment in the south-eastern USA. Journal of Antimicrobial Chemotherapy, 2017, 72, 2443-2446.	3.0	46

#	Article	IF	CITATIONS
73	Rapid and Accurate Molecular Identification of the Emerging Multidrug-Resistant Pathogen Candida auris. Journal of Clinical Microbiology, 2017, 55, 2445-2452.	3.9	140
74	Thinking beyond the Common Candida Species: Need for Species-Level Identification of Candida Due to the Emergence of Multidrug-Resistant Candida auris. Journal of Clinical Microbiology, 2017, 55, 3324-3327.	3.9	49
75	Simultaneous Emergence of Multidrug-Resistant <i>Candida auris</i> on 3 Continents Confirmed by Whole-Genome Sequencing and Epidemiological Analyses. Clinical Infectious Diseases, 2017, 64, 134-140.	5.8	1,099
76	Fluconazole resistance in Candida species: a current perspective. Infection and Drug Resistance, 2017, Volume 10, 237-245.	2.7	346
77	A Mycoses Study Group International Prospective Study of Phaeohyphomycosis: An Analysis of 99 Proven/Probable Cases. Open Forum Infectious Diseases, 2017, 4, ofx200.	0.9	43
78	Diagnostic Importance of Hyphae on Heart Valve Tissue in Histoplasma Endocarditis and Treatment With Isavuconazole. Open Forum Infectious Diseases, 2017, 4, ofx241.	0.9	10
79	Notes from the Field: Ongoing Transmission of <i>Candida auris</i> in Health Care Facilities — United States, June 2016–May 2017. Morbidity and Mortality Weekly Report, 2017, 66, 514-515.	15.1	124
80	Pharmacodynamic Optimization for Treatment of Invasive Candida auris Infection. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	65
81	Whole-Genome Analysis of <i>Cryptococcus gattii</i> , Southeastern United States. Emerging Infectious Diseases, 2016, 22, 1098-1101.	4.3	12
82	Bloodstream Infection Caused by Mucor velutinosus. Infectious Diseases in Clinical Practice, 2016, 24, e3-e4.	0.3	3
83	Candida lusitaniae MICs to the echinocandins are elevated but FKS -mediated resistance is rare. Diagnostic Microbiology and Infectious Disease, 2016, 84, 52-54.	1.8	8
84	Emergence of azole-resistant <i>Candida parapsilosis</i> causing bloodstream infection: results from laboratory-based sentinel surveillance in South Africa. Journal of Antimicrobial Chemotherapy, 2016, 71, 1994-2004.	3.0	110
85	Detection of mucormycetes and other pathogenic fungi in formalin fixed paraffin embedded and fresh tissues using the extended region of 28S rDNA. Medical Mycology, 2016, 55, myw083.	0.7	23
86	Hot Topics in Antifungal Susceptibility Testing: a New Drug, a Bad Bug, Sweeping Caspofungin Testing under the Rug, and Solving the Epidemiological Cutoff Value Shrug. Clinical Microbiology Newsletter, 2016, 38, 103-108.	0.7	1
87	An integrated genomic and transcriptomic survey of mucormycosis-causing fungi. Nature Communications, 2016, 7, 12218.	12.8	103
88	Prevalent mutator genotype identified in fungal pathogen Candida glabrata promotes multi-drug resistance. Nature Communications, 2016, 7, 11128.	12.8	227
89	The Investigational Fungal Cyp51 Inhibitor VT-1129 Demonstrates Potent <i>In Vitro</i> Activity against Cryptococcus neoformans and Cryptococcus gattii. Antimicrobial Agents and Chemotherapy, 2016, 60, 2528-2531.	3.2	58
90	Cardiothoracic surgical site phaeohyphomycosis caused by <i>Bipolaris</i> mould, multiple US states, 2008–2013: a clinical description: Table 1 Medical Mycology, 2016, 54, 318-321.	0.7	8

#	Article	IF	CITATIONS
91	Multilocus sequence typing analysis reveals that Cryptococcus neoformans var. neoformans is a recombinant population. Fungal Genetics and Biology, 2016, 87, 22-29.	2.1	34
92	Microbroth Dilution Susceptibility Testing of Candida species. Methods in Molecular Biology, 2016, 1356, 173-181.	0.9	6
93	Emerging Fungal Infections in the Pacific Northwest: The Unrecognized Burden and Geographic Range of <i>Cryptococcus gattii</i> and <i>Coccidioides immitis</i> . Microbiology Spectrum, 2016, 4, .	3.0	11
94	MLST and Whole-Genome-Based Population Analysis of Cryptococcus gattii VGIII Links Clinical, Veterinary and Environmental Strains, and Reveals Divergent Serotype Specific Sub-populations and Distant Ancestors. PLoS Neglected Tropical Diseases, 2016, 10, e0004861.	3.0	49
95	Population Genetic Analysis Reveals a High Genetic Diversity in the Brazilian Cryptococcus gattii VGII Population and Shifts the Global Origin from the Amazon Rainforest to the Semi-arid Desert in the Northeast of Brazil. PLoS Neglected Tropical Diseases, 2016, 10, e0004885.	3.0	52
96	Investigation of the First Seven Reported Cases of <i>Candida auris,</i> a Globally Emerging Invasive, Multidrug-Resistant Fungus — United States, May 2013–August 2016. Morbidity and Mortality Weekly Report, 2016, 65, 1234-1237.	15.1	201
97	Cluster ofCryptococcus neoformansInfections in Intensive Care Unit, Arkansas, USA, 2013. Emerging Infectious Diseases, 2015, 21, 1719-24.	4.3	16
98	Investigating Fungal Outbreaks in the 21st Century. PLoS Pathogens, 2015, 11, e1004804.	4.7	25
99	Epidemiology and Risk Factors for Echinocandin Nonsusceptible Candida glabrata Bloodstream Infections: Data From a Large Multisite Population-Based Candidemia Surveillance Program, 2008–2014. Open Forum Infectious Diseases, 2015, 2, ofv163.	0.9	135
100	Multilaboratory Testing of Antifungal Drug Combinations against Candida Species and Aspergillus fumigatus: Utility of 100 Percent Inhibition as the Endpoint. Antimicrobial Agents and Chemotherapy, 2015, 59, 1759-1766.	3.2	7
101	Development of a Multilocus Sequence Typing System for Medically Relevant Bipolaris Species. Journal of Clinical Microbiology, 2015, 53, 3239-3246.	3.9	11
102	Declining Incidence of Candidemia and the Shifting Epidemiology of Candida Resistance in Two US Metropolitan Areas, 2008–2013: Results from Population-Based Surveillance. PLoS ONE, 2015, 10, e0120452.	2.5	235
103	Molecular Mechanisms of Fluconazole Resistance in Candida parapsilosis Isolates from a U.S. Surveillance System. Antimicrobial Agents and Chemotherapy, 2015, 59, 1030-1037.	3.2	87
104	Management of Cryptococcus gattii meningoencephalitis. Lancet Infectious Diseases, The, 2015, 15, 348-355.	9.1	98
105	Fungal Endophthalmitis Associated with Compounded Products. Emerging Infectious Diseases, 2014, 20, 248-256.	4.3	41
106	Passive Surveillance for Azole-Resistant <i>Aspergillus fumigatus</i> , United States, 2011–2013. Emerging Infectious Diseases, 2014, 20, 1498-1503.	4.3	76
107	Cryptococcus gattii in North American Pacific Northwest: Whole-Population Genome Analysis Provides Insights into Species Evolution and Dispersal. MBio, 2014, 5, e01464-14.	4.1	126
108	Role of FKS Mutations in Candida glabrata: MIC Values, Echinocandin Resistance, and Multidrug Resistance. Antimicrobial Agents and Chemotherapy, 2014, 58, 4690-4696.	3.2	182

#	Article	IF	CITATIONS
109	Epidemiology of Echinocandin Resistance in Candida. Current Fungal Infection Reports, 2014, 8, 243-248.	2.6	19
110	Development of a Luminex-Based Multiplex Assay for Detection of Mutations Conferring Resistance to Echinocandins in Candida glabrata. Journal of Clinical Microbiology, 2014, 52, 790-795.	3.9	41
111	Cryptococcus gattii Infections and Virulence. Current Fungal Infection Reports, 2014, 8, 81-89.	2.6	6
112	Current Epidemiology of Candida Infection. Clinical Microbiology Newsletter, 2014, 36, 131-136.	0.7	55
113	Development and validation of benomyl birdseed agar for the isolation of Cryptococcus neoformans and Cryptococcus gattii from environmental samples. Medical Mycology, 2014, 52, 417-421.	0.7	11
114	Whole-Genome Analysis of Exserohilum rostratum from an Outbreak of Fungal Meningitis and Other Infections. Journal of Clinical Microbiology, 2014, 52, 3216-3222.	3.9	52
115	Real-time PCR assays for genotyping of Cryptococcus gattii in North America. BMC Microbiology, 2014, 14, 125.	3.3	3
116	Detection of Cryptococcus gattii in Selected Urban Parks of the Willamette Valley, Oregon. Mycopathologia, 2013, 175, 351-355.	3.1	10
117	An environmental Sporothrix as a cause of corneal ulcer. Medical Mycology Case Reports, 2013, 2, 88-90.	1.3	59
118	Exserohilum Infections Associated with Contaminated Steroid Injections. American Journal of Pathology, 2013, 183, 881-892.	3.8	45
119	Cryptococcus gattii, Florida, USA, 2011. Emerging Infectious Diseases, 2013, 19, 519-21.	4.3	20
120	Preliminary Laboratory Report of Fungal Infections Associated with Contaminated Methylprednisolone Injections. Journal of Clinical Microbiology, 2013, 51, 2654-2661.	3.9	41
121	Detection of Fungal DNA in Human Body Fluids and Tissues during a Multistate Outbreak of Fungal Meningitis and Other Infections. Eukaryotic Cell, 2013, 12, 677-683.	3.4	62
122	Cryptococcus gattii in the United States: Genotypic Diversity of Human and Veterinary Isolates. PLoS ONE, 2013, 8, e74737.	2.5	72
123	Prolonged Incubation Period forCryptococcus gattiiInfection in Cat, Alaska, USA. Emerging Infectious Diseases, 2013, 19, 1034-1035.	4.3	14
124	Cryptococcus albidus Infection in a California Sea Lion (Zalophus californianus). Journal of Wildlife Diseases, 2012, 48, 1030-1034.	0.8	11
125	Changes in Incidence and Antifungal Drug Resistance in Candidemia: Results From Population-Based Laboratory Surveillance in Atlanta and Baltimore, 2008-2011. Clinical Infectious Diseases, 2012, 55, 1352-1361.	5.8	307
126	Species Identification and Antifungal Susceptibility Testing of Candida Bloodstream Isolates from Population-Based Surveillance Studies in Two U.S. Cities from 2008 to 2011. Journal of Clinical Microbiology, 2012, 50, 3435-3442.	3.9	225

#	Article	IF	CITATIONS
127	Cryptococcus gattii: An Emerging Fungal Pathogen in the Southeastern United States. American Journal of the Medical Sciences, 2012, 343, 510-511.	1.1	23
128	Use of Terbinafine in the Treatment Protocol of Intestinal Cryptococcus neoformans in a Dog. Journal of the American Animal Hospital Association, 2012, 48, 216-220.	1.1	11
129	Recent Taxonomic Developments with Candida and Other Opportunistic Yeasts. Current Fungal Infection Reports, 2012, 6, 170-177.	2.6	69
130	Necrotizing Cutaneous Mucormycosis after a Tornado in Joplin, Missouri, in 2011. New England Journal of Medicine, 2012, 367, 2214-2225.	27.0	297
131	Epidemiologic cutoff values for triazole drugs in Cryptococcus gattii: correlation of molecular type and in vitro susceptibility. Diagnostic Microbiology and Infectious Disease, 2012, 73, 144-148.	1.8	54
132	Genotyping of Candida parapsilosis from three neonatal intensive care units (NICUs) using a panel of five multilocus microsatellite markers: Broad genetic diversity and a cluster of related strains in one NICU. Infection, Genetics and Evolution, 2012, 12, 1654-1660.	2.3	20
133	Candida glabrata: Multidrug Resistance and Increased Virulence in a Major Opportunistic Fungal Pathogen. Current Fungal Infection Reports, 2012, 6, 154-164.	2.6	8
134	An Invisible Threat: Mutation-Mediated Resistance to Triazole Drugs in Aspergillus. Current Fungal Infection Reports, 2012, 6, 288-295.	2.6	4
135	Whole Genome Sequence Typing to Investigate the Apophysomyces Outbreak following a Tornado in Joplin, Missouri, 2011. PLoS ONE, 2012, 7, e49989.	2.5	66
136	Azole Resistance in Aspergillus fumigatus Isolates from the ARTEMIS Global Surveillance Study Is Primarily Due to the TR/L98H Mutation in the <i>cyp51A</i> Gene. Antimicrobial Agents and Chemotherapy, 2011, 55, 4465-4468.	3.2	211
137	Trends in Antifungal Drug Susceptibility of Cryptococcus neoformans Isolates Obtained through Population-Based Surveillance in South Africa in 2002-2003 and 2007-2008. Antimicrobial Agents and Chemotherapy, 2011, 55, 2606-2611.	3.2	62
138	Transmission of Cryptococcus neoformans by Organ Transplantation. Clinical Infectious Diseases, 2011, 52, e94-e98.	5.8	93
139	Fatal Disseminated Cryptococcus gattii Infection in New Mexico. PLoS ONE, 2011, 6, e28625.	2.5	38
140	<i>In Vitro</i> Echinocandin Susceptibility of <i>Aspergillus</i> Isolates from Patients Enrolled in the Transplant-Associated Infection Surveillance Network. Antimicrobial Agents and Chemotherapy, 2011, 55, 3944-3946.	3.2	35
141	Multilaboratory Testing of Two-Drug Combinations of Antifungals against <i>Candida albicans</i> , <i>Candida glabrata</i> , and <i>Candida parapsilosis</i> . Antimicrobial Agents and Chemotherapy, 2011, 55, 1543-1548.	3.2	38
142	Validation of 24-Hour Flucytosine MIC Determination by Comparison with 48-Hour Determination by the Clinical and Laboratory Standards Institute M27-A3 Broth Microdilution Reference Method. Journal of Clinical Microbiology, 2011, 49, 4322-4325.	3.9	11
143	Comparison of In Vitro Susceptibility Characteristics of <i>Candida</i> Species from Cases of Invasive Candidiasis in Solid Organ and Stem Cell Transplant Recipients: Transplant-Associated Infections Surveillance Network (TRANSNET), 2001 to 2006. Journal of Clinical Microbiology, 2011, 49, 2404-2410.	3.9	51
144	Do Hospital Microbiology Laboratories Still Need To Distinguish Candida albicans from Candida dubliniensis?. Journal of Clinical Microbiology, 2011, 49, 4415-4415.	3.9	9

#	Article	IF	CITATIONS
145	Whole Genome Sequence Analysis of Cryptococcus gattii from the Pacific Northwest Reveals Unexpected Diversity. PLoS ONE, 2011, 6, e28550.	2.5	63
146	Ruptured mycotic aortic aneurysm in a sooty mangabey (Cercocebus atys). Comparative Medicine, 2011, 61, 532-7.	1.0	4
147	Cryptococcus gattii: Clinical Importance and Emergence in North America. Current Fungal Infection Reports, 2010, 4, 151-157.	2.6	2
148	Correlation of Genotype and <i>In Vitro</i> Susceptibilities of <i>Cryptococcus gattii</i> Strains from the Pacific Northwest of the United States. Journal of Clinical Microbiology, 2010, 48, 539-544.	3.9	95
149	Multilocus Sequence Type Analysis Reveals both Clonality and Recombination in Populations of Candida glabrata Bloodstream Isolates from U.S. Surveillance Studies. Eukaryotic Cell, 2010, 9, 619-625.	3.4	52
150	<i>FKS</i> Mutations and Elevated Echinocandin MIC Values among <i>Candida glabrata</i> Isolates from U.S. Population-Based Surveillance. Antimicrobial Agents and Chemotherapy, 2010, 54, 5042-5047.	3.2	119
151	Characterization of biofilms formed by Candida parapsilosis, C. metapsilosis, and C. orthopsilosis. International Journal of Medical Microbiology, 2010, 300, 265-270.	3.6	77
152	Utility of a Luminex-based assay for multiplexed, rapid species identification of <i>Candida</i> isolates from an ongoing candidemia surveillance. Canadian Journal of Microbiology, 2010, 56, 348-351.	1.7	27
153	Identification and Susceptibility Profile of <i>Candida fermentati</i> from a Worldwide Collection of <i>Candida guilliermondii</i> Clinical Isolates. Journal of Clinical Microbiology, 2009, 47, 242-244.	3.9	39
154	Screening of a Large Global <i>Aspergillus fumigatus</i> Species Complex Collection by Using a Species-Specific Microsphere-Based Luminex Assay. Journal of Clinical Microbiology, 2009, 47, 4171-4172.	3.9	18
155	BD Phoenix and Vitek 2 Detection of <i>mecA</i> -Mediated Resistance in <i>Staphylococcus aureus</i> with Cefoxitin. Journal of Clinical Microbiology, 2009, 47, 2879-2882.	3.9	25
156	Identification of Candida nivariensis and Candida bracarensis in a Large Global Collection of Candida glabrata Isolates: Comparison to the Literature. Journal of Clinical Microbiology, 2009, 47, 1216-1217.	3.9	87
157	Geographic Distribution and Antifungal Susceptibility of the Newly Described Species <i>Candida orthopsilosis</i> and <i>Candida metapsilosis</i> in Comparison to the Closely Related Species <i>Candida parapsilosis</i> . Journal of Clinical Microbiology, 2008, 46, 2659-2664.	3.9	176
158	<i>Lodderomyces elongisporus</i> Masquerading as <i>Candida parapsilosis</i> as a Cause of Bloodstream Infections. Journal of Clinical Microbiology, 2008, 46, 374-376.	3.9	89
159	Antimicrobial Resistance among Gram-Negative Bacilli Causing Infections in Intensive Care Unit Patients in the United States between 1993 and 2004. Journal of Clinical Microbiology, 2007, 45, 3352-3359.	3.9	310
160	Heterozygosity of genes on the sex chromosome regulatesCandida albicansvirulence. Molecular Microbiology, 2007, 64, 1587-1604.	2.5	91
161	Opaque cells signal white cells to form biofilms in Candida albicans. EMBO Journal, 2006, 25, 2240-2252.	7.8	155
162	Increased Virulence and Competitive Advantage of a/α Over a/a or α/α Offspring Conserves the Mating System of Candida albicans. Genetics, 2005, 169, 1883-1890.	2.9	55

#	Article	IF	CITATIONS
163	Chromosome Loss Followed by Duplication Is the Major Mechanism of Spontaneous Mating-Type Locus Homozygosis in Candida albicans. Genetics, 2005, 169, 1311-1327.	2.9	76
164	Unique Aspects of Gene Expression during Candida albicans Mating and Possible G 1 Dependency. Eukaryotic Cell, 2005, 4, 1175-1190.	3.4	60
165	The Closely Related Species Candida albicans and Candida dubliniensis Can Mate. Eukaryotic Cell, 2004, 3, 1015-1027.	3.4	112
166	Release of a Potent Polymorphonuclear Leukocyte Chemoattractant Is Regulated by White-Opaque Switching in Candida albicans. Infection and Immunity, 2004, 72, 667-677.	2.2	110
167	Cell Biology of Mating in Candida albicans. Eukaryotic Cell, 2003, 2, 49-61.	3.4	132
168	Skin Facilitates <i>Candida albicans</i> Mating. Infection and Immunity, 2003, 71, 4970-4976.	2.2	122
169	α-Pheromone-Induced "Shmooing―and Gene Regulation Require White-Opaque Switching during Candida albicans Mating. Eukaryotic Cell, 2003, 2, 847-855.	3.4	102
170	Relationship between Switching and Mating in Candida albicans. Eukaryotic Cell, 2003, 2, 390-397.	3.4	63
171	Mating and virulence of Candida albicans. The Mycologist, 2003, 17, 64-69.	0.4	3
172	Roles of TUP1 in Switching, Phase Maintenance, and Phase-Specific Gene Expression in Candida albicans. Eukaryotic Cell, 2002, 1, 353-365.	3.4	45
173	Ca3 Fingerprinting of Candida albicans Isolates from Human Immunodeficiency Virus-Positive and Healthy Individuals Reveals a New Clade in South Africa. Journal of Clinical Microbiology, 2002, 40, 826-836.	3.9	85
174	In <i>Candida albicans</i> , White-Opaque Switchers Are Homozygous for Mating Type. Genetics, 2002, 162, 737-745.	2.9	217
175	Elevated Phenotypic Switching and Drug Resistance of <i>Candida albicans</i> from Human Immunodeficiency Virus-Positive Individuals prior to First Thrush Episode. Journal of Clinical Microbiology, 2000, 38, 3595-3607.	3.9	81
176	<i>Candida albicans</i> Endocarditis Associated with a Contaminated Aortic Valve Allograft: Implications for Regulation of Allograft Processing. Clinical Infectious Diseases, 1998, 27, 688-691.	5.8	55
177	A MADS Box Protein Consensus Binding Site Is Necessary and Sufficient for Activation of the Opaque-Phase-Specific Gene OP4 of Candida albicans. Journal of Bacteriology, 1998, 180, 6607-6616.	2.2	29
178	Gene regulation in the white–opaque transition of <i>Candida albicans</i> . Canadian Journal of Botany, 1995, 73, 1049-1057.	1.1	7
179	Emerging Fungal Infections in the Pacific Northwest: The Unrecognized Burden and Geographic Range of <i>Cryptococcus gattii</i> and <i>Coccidioides immitis</i> , 0, , 375-384.		0

0

#	Article	IF	CITATIONS
181	Clinical Characteristics, Healthcare Utilization, and Outcomes among Patients in a Pilot Surveillance System for Invasive Mold Disease—Georgia, United States, 2017–2019. Open Forum Infectious Diseases, 0, , .	0.9	7