
Giovanni Filippone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4493861/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanical properties of meniscal circumferential fibers using an inverse finite element analysis approach. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 126, 105073.	3.1	15
2	Impact of nanoparticles on the environmental sustainability of polymer nanocomposites based on bioplastics or recycled plastics – A review of life-cycle assessment studies. Journal of Cleaner Production, 2022, 335, 130322.	9.3	20
3	Recycled (Bio)Plastics and (Bio)Plastic Composites: A Trade Opportunity in a Green Future. Polymers, 2022, 14, 2038.	4.5	14
4	Mechanical properties and reprocessability of <scp>Dielsâ€Alder</scp> â€based reversible networks from furanâ€modified resins. Journal of Applied Polymer Science, 2022, 139, .	2.6	1
5	Flexural Properties and Low-Velocity Impact Behavior of Polyamide 11/Basalt Fiber Fabric Laminates. Polymers, 2021, 13, 1055.	4.5	10
6	Increasing Awareness of Materials and the Environment: Hands-On Outreach Activity Presenting Water Purification Materials and Concepts. Journal of Chemical Education, 2021, 98, 1296-1301.	2.3	4
7	Mechanically Coherent Zeolite 13X/Chitosan Aerogel Beads for Effective CO ₂ Capture. ACS Applied Materials & Interfaces, 2021, 13, 20728-20734.	8.0	27
8	Viscoelastic and equilibrium shear properties of human meniscus: Relationships with tissue structure and composition. Journal of Biomechanics, 2021, 120, 110343.	2.1	20
9	Tailoring Chitosan/LTA Zeolite Hybrid Aerogels for Anionic and Cationic Dye Adsorption. International Journal of Molecular Sciences, 2021, 22, 5535.	4.1	10
10	Chitosan/Zeolite Composite Aerogels for a Fast and Effective Removal of Both Anionic and Cationic Dyes from Water. Polymers, 2021, 13, 1691.	4.5	14
11	Effect of rheology evolution of a sustainable chemical grout, sodium-silicate based, for low pressure grouting in sensitive areas: Urbanized or historical sites. Construction and Building Materials, 2020, 230, 117055.	7.2	9
12	Natural fiber-induced degradation in PLA-hemp biocomposites in the molten state. Composites Part A: Applied Science and Manufacturing, 2020, 137, 105990.	7.6	40
13	Role of Organo-Modifier and Metal Impurities of Commercial Nanoclays in the Photo- and Thermo-Oxidation of Polyamide 11 Nanocomposites. Polymers, 2020, 12, 1034.	4.5	4
14	Light-responsive and self-healing behavior of azobenzene-based supramolecular hydrogels. Journal of Colloid and Interface Science, 2020, 568, 16-24.	9.4	38
15	Reinforcing mechanisms of natural fibers in green composites: Role of fibers morphology in a PLA/hemp model system. Composites Science and Technology, 2019, 180, 51-59.	7.8	99
16	Bio-Polyamide 11 Hybrid Composites Reinforced with Basalt/Flax Interwoven Fibers: A Tough Green Composite for Semi-Structural Applications. Fibers, 2019, 7, 41.	4.0	27
17	Optimization of dye adsorption capacity and mechanical strength of chitosan aerogels through crosslinking strategy and graphene oxide addition. Carbohydrate Polymers, 2019, 211, 195-203.	10.2	111
18	Polylactide (PLA) Filaments a Biobased Solution for Additive Manufacturing: Correlating Rheology and Thermomechanical Properties with Printing Quality. Materials, 2018, 11, 1191.	2.9	123

GIOVANNI FILIPPONE

#	Article	IF	CITATIONS
19	Influence of alkaline treatment on hemp fibers filled poly(lactic acid). AIP Conference Proceedings, 2018, , .	0.4	2
20	Thermally activated multiple selfâ€healing dielsâ€alder epoxy system. Polymer Engineering and Science, 2017, 57, 674-679.	3.1	42
21	Interfacial crowding of nanoplatelets in co-continuous polymer blends: assembly, elasticity and structure of the interfacial nanoparticle network. Soft Matter, 2017, 13, 6465-6473.	2.7	26
22	Chitosan hydrogels embedding hyper-crosslinked polymer particles as reusable broad-spectrum adsorbents for dye removal. Carbohydrate Polymers, 2017, 177, 347-354.	10.2	93
23	Rheology of complex fluids with vibrating fiber-optic sensors. Sensors and Actuators A: Physical, 2017, 264, 219-223.	4.1	9
24	Role of polymer network and gelation kinetics on the mechanical properties and adsorption capacity of chitosan hydrogels for dye removal. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1843-1849.	2.1	20
25	Tailoring gas permeation and dielectric properties of bromobutyl rubber – Graphene oxide nanocomposites by inducing an ordered nanofiller microstructure. Composites Part B: Engineering, 2017, 116, 361-368.	12.0	27
26	Low-Density Polyethylene/Polyamide/Clay Blend Nanocomposites: Effect of Morphology of Clay on Their Photooxidation Resistance. Journal of Nanomaterials, 2017, 2017, 1-9.	2.7	2
27	Interfacially-Located Nanoparticles Anticipate the Onset of Co-Continuity in Immiscible Polymer Blends. Polymers, 2017, 9, 393.	4.5	4
28	Morphology stabilization of co-continuous polymer blends through clay nanoparticles. AIP Conference Proceedings, 2016, , .	0.4	1
29	Chitosan-based hydrogel for dye removal from aqueous solutions: Optimization of the preparation procedure. AIP Conference Proceedings, 2016, , .	0.4	1
30	Insight on mendable resin made by combining Diels-Alder epoxy adducts with DGEBA. AIP Conference Proceedings, 2016, , .	0.4	6
31	Controlling the assembly of graphene based nanosheets within a rubber matrix: Nanocomposite morphology probed by measuring gas permeation and dielectric properties. AIP Conference Proceedings, 2016, , .	0.4	0
32	Grafting of polymer chains on the surface of carbon nanotubes via nitroxide radical coupling reaction. Polymer International, 2016, 65, 48-56.	3.1	13
33	Effects of nanoparticles on the morphology of immiscible polymer blends – Challenges and opportunities. European Polymer Journal, 2016, 79, 198-218.	5.4	190
34	Multi-functional polyhedral oligomeric silsesquioxane-functionalized carbon nanotubes for photo-oxidative stable Ultra-High Molecular Weight Polyethylene-based nanocomposites. European Polymer Journal, 2016, 75, 525-537.	5.4	19
35	Advanced ultraâ€high molecular weight polyethylene/antioxidantâ€functionalized carbon nanotubes nanocomposites with improved thermoâ€oxidative resistance. Journal of Applied Polymer Science, 2015, 132, .	2.6	16
36	Surface Morphology, Crystallinity, and Hydrophilicity of Poly(εâ€caprolactone) Films Prepared Via Casting of Ethyl Lactate and Ethyl Acetate Solutions. Macromolecular Chemistry and Physics, 2015, 216, 49-58.	2.2	12

GIOVANNI FILIPPONE

#	Article	IF	CITATIONS
37	Time-resolved rheology as a tool to monitor the progress of polymer degradation in the melt state – Part I: Thermal and thermo-oxidative degradation of polyamide 11. Polymer, 2015, 72, 134-141.	3.8	54
38	Time-resolved rheology as a tool to monitor the progress of polymer degradation in the melt state – Part II: Thermal and thermo-oxidative degradation of polyamide 11/organo-clay nanocomposites. Polymer, 2015, 73, 102-110.	3.8	38
39	Study of the morphology and texture of poly(Îμ-caprolactone)/polyethylene oxide blend films as a function of composition and the addition of nanofillers with different functionalities. RSC Advances, 2015, 5, 59354-59363.	3.6	4
40	Solid particle erosion and viscoelastic properties of thermoplastic polyurethanes. EXPRESS Polymer Letters, 2015, 9, 166-176.	2.1	25
41	Supercritical CO2 antisolvent precipitation from biocompatible polymer solutions: A novel sustainable approach for biomaterials design and fabrication. Journal of Supercritical Fluids, 2015, 105, 9-20.	3.2	4
42	Thermo-oxidative resistant nanocomposites containing novel hybrid-nanoparticles based on natural polyphenol and carbon nanotubes. Polymer Degradation and Stability, 2015, 115, 129-137.	5.8	36
43	Multi-functional hindered amine light stabilizers-functionalized carbon nanotubes for advanced ultra-high molecular weight Polyethylene-based nanocomposites. Composites Part B: Engineering, 2015, 82, 196-204.	12.0	37
44	Mechanical performance of polylactic based formulations. , 2015, , 17-37.		3
45	Dispersing hydrophilic nanoparticles in hydrophobic polymers: HDPE/ZnO nanocomposites by a novel template-based approach. EXPRESS Polymer Letters, 2014, 8, 362-372.	2.1	31
46	Impact of solvents and supercritical CO2 drying on the morphology and structure of polymer-based biofilms. , 2014, , .		0
47	Immobilization of natural anti-oxidants on carbon nanotubes and aging behavior of ultra-high molecular weight polyethylene-based nanocomposites. , 2014, , .		4
48	Melt state dynamics of plate-like nanoparticles in immiscible polymer blends. , 2014, , .		0
49	Effectiveness of organoclays as compatibilizers for multiphase polymer blends – A sustainable route for the mechanical recycling of co-mingled plastics. AIP Conference Proceedings, 2014, , .	0.4	4
50	Heat-Resistant Fully Bio-Based Nanocomposite Blends Based on Poly(lactic acid). Macromolecular Materials and Engineering, 2014, 299, 31-40.	3.6	60
51	Assembly of plate-like nanoparticles in immiscible polymer blends – effect of the presence of a preferred liquid–liquid interface. Soft Matter, 2014, 10, 3183.	2.7	30
52	Functionalization of aliphatic polyesters by nitroxide radical coupling. Polymer Chemistry, 2014, 5, 5656.	3.9	20
53	Nanoparticle-induced co-continuity in immiscible polymer blends – A comparative study on bio-based PLA-PA11 blends filled with organoclay, sepiolite, and carbon nanotubes. Polymer, 2014, 55, 4908-4919.	3.8	98
54	α-Tocopherol-induced radical scavenging activity in carbon nanotubes for thermo-oxidation resistant ultra-high molecular weight polyethylene-based nanocomposites. Carbon, 2014, 74, 14-21.	10.3	48

#	Article	IF	CITATIONS
55	Using matrixâ€assisted laser desorption/ionization timeâ€ofâ€flight mass spectrometry for the characterization of functionalized carbon nanotubes. Rapid Communications in Mass Spectrometry, 2013, 27, 1359-1366.	1.5	6
56	Importance of the morphology and structure of the primary aggregates for the dispersibility of carbon nanotubes in polymer melts. Composites Science and Technology, 2013, 85, 17-22.	7.8	20
57	Clay-filled bio-based blends of poly(lactic acid) and polyamide 11. , 2012, , .		2
58	Linear viscoelasticity of polymer-graphite nanoplatelets (GNPs) nanocomposites. , 2012, , .		1
59	Effect of the aggregate morphology on the dispersability of MWCNTs in polymer melts. , 2012, , .		0
60	A Unifying Approach for the Linear Viscoelasticity of Polymer Nanocomposites. Macromolecules, 2012, 45, 8853-8860.	4.8	69
61	Clustering of Coated Droplets in Clayâ€Filled Polymer Blends. Macromolecular Materials and Engineering, 2012, 297, 923-928.	3.6	25
62	Elasticity and structure of weak graphite nanoplatelet (GNP) networks in polymer matrices through viscoelastic analyses. Polymer, 2012, 53, 2699-2704.	3.8	28
63	Universal Features of the Melt Elasticity of Interacting Polymer Nanocomposites. Langmuir, 2012, 28, 5458-5463.	3.5	31
64	Role of Interface Rheology in Altering the Onset of Coâ€Continuity in Nanoparticleâ€Filled Polymer Blends. Macromolecular Materials and Engineering, 2011, 296, 658-665.	3.6	26
65	Altering the onset of cocontinuity in nanocomposite immiscible blends by acting on the meltâ€compounding procedure. Journal of Applied Polymer Science, 2011, 122, 3711-3718.	2.6	11
66	Viscoelasticity and Structure of Polystyrene/Fumed Silica Nanocomposites: Filler Network and Hydrodynamic Contributions. Langmuir, 2010, 26, 2714-2720.	3.5	64
67	Photo-oxidation behaviour of polyethylene/polyamide 6 blends filled with organomodified clay: Improvement of the photo-resistance through morphology modification. Polymer Degradation and Stability, 2010, 95, 527-535.	5.8	38
68	Using organoclay to promote morphology refinement and co-continuity in high-density polyethylene/polyamide 6 blends – Effect of filler content and polymer matrix composition. Polymer, 2010, 51, 3956-3965.	3.8	82
69	Selective localization of organoclay and effects on the morphology and mechanical properties of LDPE/PA11 blends with distributed and coâ€continuous morphology. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 600-609.	2.1	41
70	Effect of the Compounding Procedure on the Structure and Viscoelasticity of Polymer Nanocomposites. AIP Conference Proceedings, 2010, , .	0.4	1
71	Impact of Nanoparticles on the Microstructure and Properties of Immiscible Polymer Blends: Preliminary Investigations. , 2010, , .		1
72	Effects of particle dimension and matrix viscosity on the colloidal aggregation in weakly interacting polymer-nanoparticle composites: a linear viscoelastic analysis. Polymer Bulletin, 2009, 63, 883-895.	3.3	24

IF ARTICLE CITATIONS The role of organoclay in promoting co-continuous morphology in high-density 3.8 poly(ethylene)/poly(amide) 6 blends. Polymer, 2008, 49, 1312-1322. Elasticity and dynamics of particle gels in non-Newtonian melts. Rheologica Acta, 2008, 47, 989-997. 2.4 38 ELASTICITY AND DYNAMICS OF PARTICLE GELS IN NON-NEWTONIAN MELTS. AIP Conference Proceedings, 0.4 EFFECT OF ORGANOCLAY ON THE MORPHOLOGY AND MECHANICAL PROPERTIES OF LDPEa[^]•PA11 BLENDS. AIP 0.4 0 Conference Proceedings, 2008, , . Rheological Aspects of PP-TiO2 Micro and Nanocomposites: A Preliminary Investigation. Macromolecular Symposia, 2007, 247, 59-66. Dynamics of Stress Bearing Particle Networks in Poly(propylene)/Alumina Nanohybrids. Macromolecular Materials and Engineering, 2007, 292, 347-353. 3.6 15 Microstructural evolutions of LDPE/PA6 blends by rheological and rheo-optical analyses: Influence of flow and compatibilizer on break-up and coalescence processes. Polymer, 2007, 48, 564-573. Structure and dynamics of polyethylene/clay films. Journal of Applied Polymer Science, 2006, 102, 29 2.6 4749-4758. Manufacturing of bio-polyamide 11/basalt thermoplastic laminates by hot compaction: The key-role of matrix rheology. Journal of Thermoplastic Composite Materials, 0, , 089270572110702. 4.2

GIOVANNI FILIPPONE

#

74

76

78

79

80