Jean-Jacques Vasseur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4492570/publications.pdf

Version: 2024-02-01

226 papers 6,774 citations

41 h-index

71102

95266 68 g-index

254 all docs

254 docs citations

times ranked

254

6454 citing authors

#	Article	IF	Citations
1	Reversible methylation of m6Am in the 5′ cap controls mRNA stability. Nature, 2017, 541, 371-375.	27.8	797
2	FTO controls reversible m6Am RNA methylation during snRNA biogenesis. Nature Chemical Biology, 2019, 15, 340-347.	8.0	192
3	Microwave Assisted "Click―Chemistry for the Synthesis of Multiple Labeled-Carbohydrate Oligonucleotides on Solid Support. Journal of Organic Chemistry, 2006, 71, 4700-4702.	3.2	188
4	Identification of the m6Am Methyltransferase PCIF1 Reveals the Location and Functions of m6Am in the Transcriptome. Molecular Cell, 2019, 75, 631-643.e8.	9.7	183
5	Recent developments in alkyne borylations. Tetrahedron, 2014, 70, 8431-8452.	1.9	172
6	DNA-Based Carbohydrate Biochips: A Platform for Surface Glyco-Engineering. Angewandte Chemie - International Edition, 2007, 46, 2398-2402.	13.8	138
7	Boron and nucleic acid chemistries: merging the best of both worlds. Chemical Society Reviews, 2013, 42, 5684.	38.1	112
8	Threeâ€Component Reaction Using the Bestmann–Ohira Reagent: A Regioselective Synthesis of Phosphonyl Pyrazole Rings. Angewandte Chemie - International Edition, 2010, 49, 3196-3199.	13.8	109
9	Zika Virus Methyltransferase: Structure and Functions for Drug Design Perspectives. Journal of Virology, 2017, 91, .	3.4	109
10	La-related protein 1 (LARP1) repression of TOP mRNA translation is mediated through its cap-binding domain and controlled by an adjacent regulatory region. Nucleic Acids Research, 2018, 46, 1457-1469.	14.5	103
11	Oligonucleosides: synthesis of a novel methylhydroxylamine-linked nucleoside dimer and its incorporation into antisense sequences. Journal of the American Chemical Society, 1992, 114, 4006-4007.	13.7	102
12	Fucosylated Pentaerythrityl Phosphodiester Oligomers (PePOs):  Automated Synthesis of DNA-Based Glycoclusters and Binding to Pseudomonas aeruginosa Lectin (PA-IIL). Bioconjugate Chemistry, 2007, 18, 1637-1643.	3.6	96
13	Synthesis of Mannose and Galactose Oligonucleotide Conjugates by Bi-click chemistry. Journal of Organic Chemistry, 2009, 74, 1218-1222.	3.2	84
14	FTO-mediated cytoplasmic m6Am demethylation adjusts stem-like properties in colorectal cancer cell. Nature Communications, 2021, 12, 1716.	12.8	83
15	A Baseâ€Labile Group for 2â€2â€OH Protection of Ribonucleosides: A Major Challenge for RNA Synthesis. Chemistry - A European Journal, 2008, 14, 9135-9138.	3.3	78
16	New Strategies for Cyclization and Bicyclization of Oligonucleotides by Click Chemistry Assisted by Microwaves. Journal of Organic Chemistry, 2008, 73, 191-200.	3.2	76
17	DNA vs. Mirrorâ€lmage DNA: A Universal Approach to Tune the Absolute Configuration in DNAâ€Based Asymmetric Catalysis. Angewandte Chemie - International Edition, 2013, 52, 11546-11549.	13.8	76
18	Cap-proximal nucleotides via differential eIF4E binding and alternative promoter usage mediate translational response to energy stress. ELife, 2017, 6, .	6.0	75

#	Article	IF	Citations
19	Azide Solid Support for 3′-Conjugation of Oligonucleotides and Their Circularization by Click Chemistry. Journal of Organic Chemistry, 2009, 74, 6837-6842.	3.2	70
20	Design of Triazoleâ€Tethered Glycoclusters Exhibiting Three Different Spatial Arrangements and Comparative Study of their Affinities towards PAâ€IL and RCA 120 by Using a DNAâ€Based Glycoarray. ChemBioChem, 2009, 10, 1369-1378.	2.6	69
21	Oligonucleotide Mimics for Antisense Therapeutics:Â Solution Phase and Automated Solid-Support Synthesis of MMI Linked Oligomers. Journal of the American Chemical Society, 1996, 118, 255-256.	13.7	67
22	Molecular Basis for Nucleotide Conservation at the Ends of the Dengue Virus Genome. PLoS Pathogens, 2012, 8, e1002912.	4.7	66
23	Binding of the Methyl Donor <i>S</i> -Adenosyl- <scp> </scp> -Methionine to Middle East Respiratory Syndrome Coronavirus $2\hat{a} \in \mathbb{Z}$ - <i>O</i> -Methyltransferase nsp16 Promotes Recruitment of the Allosteric Activator nsp10. Journal of Virology, 2017, 91, .	3.4	61
24	Amineâ^'Guanidine Switch: A Promising Approach to Improve DNA Binding and Antiproliferative Activities. Journal of Medicinal Chemistry, 2007, 50, 6465-6475.	6.4	57
25	Efficient Solid-Phase Chemical Synthesis of 5′-Triphosphates of DNA, RNA, and their Analogues. Organic Letters, 2010, 12, 2190-2193.	4.6	56
26	Synthesis of adenine dinucleosides SAM analogs as specific inhibitors of SARS-CoV nsp14 RNA cap guanine-N7-methyltransferase. European Journal of Medicinal Chemistry, 2020, 201, 112557.	5 . 5	56
27	Impact of the Guanidinium Group on Hybridization and Cellular Uptake of Cationic Oligonucleotides. ChemBioChem, 2006, 7, 684-692.	2.6	54
28	Chemical Modifications to Improve the Cellular Uptake of Oligonucleotides. Current Topics in Medicinal Chemistry, 2007, 7, 727-737.	2.1	53
29	mRNA Capping by Venezuelan Equine Encephalitis Virus nsP1: Functional Characterization and Implications for Antiviral Research. Journal of Virology, 2015, 89, 8292-8303.	3.4	52
30	Synthesis of a Library of Fucosylated Glycoclusters and Determination of their Binding toward Pseudomonas aeruginosa Lectin B (PA-IIL) Using a DNA-Based Carbohydrate Microarray. Bioconjugate Chemistry, 2012, 23, 1534-1547.	3.6	51
31	Design, Synthesis, and Binding Affinity Evaluation of Hoechst 33258 Derivatives for the Development of Sequence-Specific DNA-Based Asymmetric Catalysts. ACS Catalysis, 2016, 6, 3096-3105.	11.2	51
32	X-ray structure and activities of an essential Mononegavirales L-protein domain. Nature Communications, 2015, 6, 8749.	12.8	49
33	Dynamic and Programmable DNAâ€Templated Boronic Ester Formation. Angewandte Chemie - International Edition, 2011, 50, 4193-4196.	13.8	48
34	Straightforward synthesis of triazoloacyclonucleotide phosphonates as potential HCV inhibitors. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 7365-7368.	2.2	47
35	Regioselective Synthesis of 3â€Carboâ€5â€phosphonylpyrazoles through a Oneâ€Pot Claisen–Schmidt/1,3â€Dipolar Cycloaddition/Oxidation Sequence. European Journal of Organic Chemistry, 2011, 2011, 3184-3190.	2.4	47
36	Synthesis of $5\hat{a} \in ^2$ cap-0 and cap-1 RNAs using solid-phase chemistry coupled with enzymatic methylation by human (guanine- <i>N</i> ⁷)-methyl transferase. Rna, 2012, 18, 856-868.	3. 5	47

#	Article	IF	Citations
37	Photocleavable Protecting Groups as Nucleobase Protections Allowed the Solid-Phase Synthesis of Base-Sensitive SATE-Prooligonucleotides. Journal of Organic Chemistry, 1999, 64, 6319-6328.	3.2	45
38	Expanding the borononucleotide family: synthesis of borono-analogues of dCMP, dGMP and dAMP. Organic and Biomolecular Chemistry, 2009, 7, 4369.	2.8	45
39	Ecological catalysis and phytoextraction: Symbiosis for future. Applied Catalysis B: Environmental, 2014, 146, 279-288.	20.2	45
40	Oligonucleotide Carbohydrate-Centered Galactosyl Cluster Conjugates Synthesized by Click and Phosphoramidite Chemistries. Bioconjugate Chemistry, 2010, 21, 1520-1529.	3.6	43
41	Toward the identification of viral cap-methyltransferase inhibitors by fluorescence screening assay. Antiviral Research, 2017, 144, 330-339.	4.1	43
42	First Evaluation of Acyloxymethyl or Acylthiomethyl Groups as Biolabile 2â€~-O-Protections of RNAâ€. Organic Letters, 2006, 8, 3869-3872.	4.6	42
43	DNA-directed immobilisation of glycomimetics for glycoarrays application: Comparison with covalent immobilisation, and development of an on-chip IC50 measurement assay. Biosensors and Bioelectronics, 2009, 24, 2515-2521.	10.1	42
44	Borononucleotides: synthesis, and formation of a new reversible boronate internucleosidic linkage. Chemical Communications, 2008, , 2352.	4.1	41
45	Oligonucleotide Sequential Bis-Conjugation via Clickâ^'Oxime and Clickâ^'Huisgen Procedures. Journal of Organic Chemistry, 2010, 75, 3927-3930.	3.2	39
46	The methyltransferase domain of the Sudan ebolavirus L protein specifically targets internal adenosines of RNA substrates, in addition to the cap structure. Nucleic Acids Research, 2018, 46, 7902-7912.	14.5	39
47	Combinatorial and Automated Synthesis of Phosphodiester Galactosyl Cluster on Solid Support by Click Chemistry Assisted by Microwaves. Journal of Organic Chemistry, 2008, 73, 6014-6017.	3.2	38
48	Synthesis and biological activity of some 4-substituted 1-[1-(2,3-dihydroxy-1-propoxy)methyl-1,2,3-triazol-(4 & 5)-ylmethyl]-1H-pyrazolo[3,4-d]pyrimidines. Il Farmaco, 2002, 57, 27-32.	0.9	36
49	Cationic phosphoramidate Â-oligonucleotides efficiently target single-stranded DNA and RNA and inhibit hepatitis C virus IRES-mediated translation. Nucleic Acids Research, 2003, 31, 5282-5290.	14.5	36
50	<i>Bacillus subtilis</i> RNA deprotection enzyme RppH recognizes guanosine in the second position of its substrates. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8858-8863.	7.1	36
51	Structure Binding Relationship of Galactosylated Glycoclusters toward Pseudomonas aeruginosa Lectin LecA Using a DNA-Based Carbohydrate Microarray. Bioconjugate Chemistry, 2014, 25, 379-392.	3.6	36
52	Fluorescent Thrombin Binding Aptamer-Tagged Nanoparticles for an Efficient and Reversible Control of Thrombin Activity. ACS Applied Materials & Samp; Interfaces, 2017, 9, 35574-35587.	8.0	36
53	Fluorescence Enhancement upon G-Quadruplex Folding: Synthesis, Structure, and Biophysical Characterization of a Dansyl/Cyclodextrin-Tagged Thrombin Binding Aptamer. Bioconjugate Chemistry, 2013, 24, 1917-1927.	3.6	35
54	Mannose-centered aromatic galactoclusters inhibit the biofilm formation of Pseudomonas aeruginosa. Organic and Biomolecular Chemistry, 2015, 13, 8433-8444.	2.8	35

#	Article	IF	Citations
55	Modified internucleoside linkages for nuclease-resistant oligonucleotides. RSC Chemical Biology, 2021, 2, 94-150.	4.1	35
56	Use of inter-proton nuclear Overhauser effects to assign the nuclear magnetic resonance spectra of oligodeoxynucleotide and hybrid duplexes in aqueous solution. FEBS Journal, 1983, 135, 307-314.	0.2	34
57	Synthesis of Homo- and Heterofunctionalized Glycoclusters and Binding to Pseudomonas aeruginosa Lectins PA-IL and PA-IIL. Journal of Organic Chemistry, 2012, 77, 7620-7626.	3.2	34
58	DNA-cellulose: an economical, fully recyclable and highly effective chiral biomaterial for asymmetric catalysis. Chemical Communications, 2015, 51, 6076-6079.	4.1	33
59	Characterization of specific noncovalent complexes between guanidinium derivatives and single-stranded DNA by MALDI. Journal of the American Society for Mass Spectrometry, 2006, 17, 283-291.	2.8	32
60	Selective fluorescence-based detection of dihydrouridine with boronic acids. Tetrahedron Letters, 2006, 47, 9253-9256.	1.4	31
61	Synthesis, thermal stability and reactivity towards 9-aminoellipticine of double-stranded oligonucleotides containing a true abasic site. Nucleic Acids Research, 1989, 17, 10307-10319.	14.5	30
62	Î-Di-carboxybutyl phosphoramidate of 2′-deoxycytidine-5′-monophosphate as substrate for DNA polymerization by HIV-1 reverse transcriptase. Bioorganic and Medicinal Chemistry, 2009, 17, 7008-7014.	3.0	29
63	Toward the Rational Design of Galactosylated Glycoclusters That Target <i>Pseudomonas aeruginosa</i> Lectin A (LecA): Influence of Linker Arms That Lead to Lowâ€Nanomolar Multivalent Ligands. Chemistry - A European Journal, 2016, 22, 11785-11794.	3.3	29
64	Structure of the adduct formed between 3-aminocarbazole and the apurinic site oligonucleotide model d[Tp(Ap)pT]. Journal of Organic Chemistry, 1987, 52, 4994-4998.	3.2	28
65	Specific recognition of lectins by oligonucleotide glycoconjugates and sorting on a DNA microarray. Chemical Communications, 2009, , 6795.	4.1	28
66	Quantitative analysis (Kd and IC50) of glycoconjugates interactions with a bacterial lectin on a carbohydrate microarray with DNA Direct Immobilization (DDI). Biosensors and Bioelectronics, 2013, 40, 153-160.	10.1	28
67	The influence of the aromatic aglycon of galactoclusters on the binding of LecA: a case study with O-phenyl, S-phenyl, O-benzyl, S-benzyl, O-biphenyl and O-naphthyl aglycons. Organic and Biomolecular Chemistry, 2014, 12, 9166-9179.	2.8	28
68	An efficient reagent for 5′-azido oligonucleotide synthesis. Tetrahedron Letters, 2007, 48, 8795-8798.	1.4	27
69	NIS-promoted guanylation of amines. Tetrahedron Letters, 2009, 50, 1463-1465.	1.4	27
70	High-Yield Solution-Phase Synthesis of Di- and Trinucleotide Blocks Assisted by Polymer-Supported Reagents. Organic Letters, 2005, 7, 3485-3488.	4.6	26
71	Intermolecular radical Cî—,C bond formation: Synthesis of a novel dinucleoside linker for non-anionic antisense oligonucleosides. Tetrahedron Letters, 1992, 33, 2645-2648.	1.4	25
72	Synthesis of new N-isobutyryl-l-cysteine/MEA conjugates: Evaluation of their free radical-scavenging activities and anti-HIV properties in human macrophages. Bioorganic Chemistry, 2008, 36, 133-140.	4.1	25

#	Article	IF	Citations
73	Detection of short ssDNA and dsDNA by current-voltage measurements using conical nanopores coated with Al2O3 by atomic layer deposition. Mikrochimica Acta, 2016, 183, 1011-1017.	5.0	25
74	Stimuli-responsive oligonucleotides in prodrug-based approaches for gene silencing. Beilstein Journal of Organic Chemistry, 2018, 14, 436-469.	2.2	25
75	Use of Allylic Protecting Groups for the Synthesis of Base-Sensitive Prooligonucleotides. European Journal of Organic Chemistry, 2002, 2002, 49-56.	2.4	24
76	DNA glycoclusters and DNA-based carbohydrate microarrays: From design to applications. RSC Advances, 2012, 2, 12043.	3.6	24
77	Importance of topology for glycocluster binding to Pseudomonas aeruginosa and Burkholderia ambifaria bacterial lectins. Organic and Biomolecular Chemistry, 2015, 13, 11244-11254.	2.8	24
78	A rational quest for selectivity through precise ligand-positioning in tandem DNA-catalysed Friedel–Crafts alkylation/asymmetric protonation. Chemical Science, 2019, 10, 2875-2881.	7.4	24
79	Potent Inhibition of SARS-CoV-2 nsp14 <i>N</i> 7-Methyltransferase by Sulfonamide-Based Bisubstrate Analogues. Journal of Medicinal Chemistry, 2022, 65, 6231-6249.	6.4	24
80	Boronic acid-based fluorescent receptors for selective recognition of thymine glycol. Tetrahedron Letters, 2008, 49, 6075-6078.	1.4	23
81	Synthesis and Preliminary Evaluation of pro-RNA 2′- <i>O</i> 'OGroups in an RNA Interference Assay. Journal of Organic Chemistry, 2011, 76, 5719-5731.	3.2	23
82	DNAâ€Templated [2+2] Photocycloaddition: A Straightforward Entry into the Aplysinopsin Family of Natural Products. Angewandte Chemie - International Edition, 2018, 57, 11786-11791.	13.8	23
83	Fine-tuning the properties of the thrombin binding aptamer through cyclization: Effect of the 5′-3′ connecting linker on the aptamer stability and anticoagulant activity. Bioorganic Chemistry, 2020, 94, 103379.	4.1	23
84	Design, Synthesis and Characterization of Cyclic NU172 Analogues: A Biophysical and Biological Insight. International Journal of Molecular Sciences, 2020, 21, 3860.	4.1	23
85	Multiplexed binding determination of seven glycoconjugates for Pseudomonas aeruginosa Lectin I (PA-IL) using a DNA-based carbohydrate microarray. Chemical Communications, 2011, 47, 8826.	4.1	22
86	Bis†and Trisâ€Alkyne Phosphoramidites for Multiple 5′â€Labeling of Oligonucleotides by Click Chemistry. European Journal of Organic Chemistry, 2012, 2012, 1851-1856.	2.4	22
87	Expanding biohybrid-mediated asymmetric catalysis into the realm of RNA. Chemical Communications, 2016, 52, 8604-8607.	4.1	22
88	Design and Synthesis of Galactosylated Bifurcated Ligands with Nanomolar Affinity for Lectin LecA from <i>Pseudomonas aeruginosa</i> ChemBioChem, 2017, 18, 1036-1047.	2.6	22
89	The anti-adhesive effect of glycoclusters on <i>Pseudomonas aeruginosa</i> bacteria adhesion to epithelial cells studied by AFM single cell force spectroscopy. Nanoscale, 2018, 10, 12771-12778.	5.6	22
90	Stability Is Not Everything: The Case of the Cyclisation of a Thrombinâ€Binding Aptamer. ChemBioChem, 2019, 20, 1789-1794.	2.6	22

#	Article	IF	CITATIONS
91	Assessment of new $2\hat{a}\in^2$ -O-acetalester protecting groups for regular RNA synthesis and original $2\hat{a}\in^2$ -modified proRNA. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 4046-4049.	2.2	21
92	pH-controlled DNA- and RNA-templated assembly of short oligomers. Chemical Science, 2015, 6, 542-547.	7.4	21
93	Efficient guanidination of the phosphate linkage towards cationic phosphoramidate oligonucleotides. Tetrahedron Letters, 2003, 44, 6579-6582.	1.4	20
94	Electrochemical detection of nucleic acids using pentaferrocenyl phosphoramidate \hat{l}_{\pm} -oligonucleotides. New Journal of Chemistry, 2011, 35, 893.	2.8	20
95	Synthesis of Monoconjugated and Multiply Conjugated Oligonucleotides by "Click Thiolâ€∙ Thiolâ€Michaelâ€Type Additions and by Combination with CuAAC "Click Huisgen― European Journal of Organic Chemistry, 2013, 2013, 465-473.	2.4	20
96	Improved Performance of DNA Microarray Multiplex Hybridization Using Probes Anchored at Several Points by Thiol–Ene or Thiol–Yne Coupling Chemistry. Bioconjugate Chemistry, 2017, 28, 496-506.	3.6	20
97	Machine Learning to Improve the Sensing of Biomolecules by Conical Track-Etched Nanopore. Biosensors, 2020, 10, 140.	4.7	20
98	An easy access of 2′,3′-dideoxy-3′-α-C-formyl-adenosine and -guanosine analogs via stereoselective Cî—, forming radical reaction. Tetrahedron Letters, 1994, 35, 4697-4700.	C bond	19
99	Matrix-assisted laser desorption/ionization mass spectrometric analysis of polysulfated-derived oligosaccharides using pyrenemethylguanidine. Journal of the American Society for Mass Spectrometry, 2009, 20, 131-137.	2.8	19
100	Solidâ€Phase Chemical Synthesis of 5′â€Triphosphate DNA, RNA, and Chemically Modified Oligonucleotides. Current Protocols in Nucleic Acid Chemistry, 2012, 50, Unit1.28.	0.5	19
101	Development of Innovative and Versatile Polythiol Probes for Use on ELOSA or Electrochemical Biosensors: Application in Hepatitis C Virus Genotyping. Analytical Chemistry, 2013, 85, 9204-9212.	6.5	19
102	Bis-benzoxaboroles: Design, Synthesis, and Biological Evaluation as Carbonic Anhydrase Inhibitors. ACS Medicinal Chemistry Letters, 2019, 10, 1205-1210.	2.8	19
103	A versatile reagent for the synthesis of 5′-phosphorylated, 5′-thiophosphorylated or 5′-phosphoramidate-conjugated oligonucleotides. Tetrahedron Letters, 2006, 47, 8867-8871.	1.4	18
104	Synthesis of branched-phosphodiester and mannose-centered fucosylated glycoclusters and their binding studies with Burkholderia ambifaria lectin (BambL). RSC Advances, 2013, 3, 19515.	3.6	18
105	Polarity of annealing and structural analysis of the RNase H resistant .alpha5'-d[TACACA]:.beta5'-r[AUGUGU] hybrid determined by high-field proton, carbon-13, and phosphorus-31 NMR analysis. Biochemistry, 1990, 29, 10329-10341.	2.5	17
106	Highly Stable DNA Triplexes Formed with Cationic Phosphoramidate Pyrimidine \hat{l} ±-Oligonucleotides. ChemBioChem, 2005, 6, 1254-1262.	2.6	17
107	Universal Solid Supports for the Synthesis of Oligonucleotides via a Transesterification of H-phosphonate Diester Linkage. Journal of Organic Chemistry, 2005, 70, 9198-9206.	3.2	17
108	Conformational and Chiral Selection of Oligonucleotides. Chemistry and Biodiversity, 2007, 4, 803-817.	2.1	17

#	Article	IF	CITATIONS
109	$5\hat{a}\in^2$ -Bis-conjugation of Oligonucleotides by Amidative Oxidation and Click Chemistry. Journal of Organic Chemistry, 2010, 75, 6689-6692.	3.2	17
110	From Anionic to Cationic <i>αâ€</i> Anomeric Oligodeoxynucleotides. Chemistry and Biodiversity, 2010, 7, 494-535.	2.1	17
111	Synthesis of Galactoclusters by Metalâ€Free Thiol "Click Chemistry―and Their Binding Affinities for <i>Pseudomonas aeruginosa</i> Lectin LecA. European Journal of Organic Chemistry, 2014, 2014, 7621-7630.	2.4	17
112	Synthesis and incorporation of methyleneoxy(methylimino) linked thymidine dimer into antisense oligonucleosides. Bioorganic and Medicinal Chemistry Letters, 1992, 2, 1479-1482.	2.2	16
113	Kinetics study of the biotransformation of an oligonucleotide prodrug in cells extract by matrix-assisted laser desorption–ionization time-of-flight mass spectrometry. Biomedical Applications, 2001, 753, 123-130.	1.7	16
114	DNA directed immobilization glycocluster array: applications and perspectives. Current Opinion in Chemical Biology, 2014, 18, 46-54.	6.1	16
115	RNase H-Assisted Imaging of Peroxynitrite in Living Cells with 5′-Boronic Acid Modified DNA. ACS Sensors, 2016, 1, 970-974.	7.8	16
116	Conjugation of Doxorubicin to siRNA Through Disulfide-based Self-immolative Linkers. Molecules, 2020, 25, 2714.	3.8	16
117	Solution-Phase Synthesis of Phosphorothioate Oligonucleotides Using a Solid-Supported Acyl Chloride withH-Phosphonate Chemistry. European Journal of Organic Chemistry, 2006, 2006, 436-448.	2.4	15
118	Metallophyte wastes and polymetallic catalysis: a promising combination in green chemistry. The illustrative synthesis of $5\hat{a} \in ^2$ -capped RNA. RSC Advances, 2013, 3, 5204.	3.6	15
119	DNA-templated borononucleic acid self assembly: a study of minimal complexity. RSC Advances, 2015, 5, 105587-105591.	3.6	15
120	A versatile post-synthetic method on a solid support for the synthesis of RNA containing reduction-responsive modifications. Organic and Biomolecular Chemistry, 2016, 14, 7010-7017.	2.8	15
121	Dramatic effect of the anomeric configuration on the thermal stability of duplex formed between novel dodecathymidine phosphoramidate (PNH2) and complementary DNA and RNA strands. Tetrahedron Letters, 1996, 37, 5869-5872.	1.4	14
122	Toward high yield synthesis of peptide–oligonucleotide chimera through a disulfide bridge: A simplified method for oligonucleotide activation. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 5084-5087.	2.2	14
123	Heteroâ€Click Conjugation of Oligonucleotides with Glycosides Using Bifunctional Phosphoramidites. European Journal of Organic Chemistry, 2015, 2015, 2921-2927.	2.4	14
124	RNA-based boronate internucleosidic linkages: an entry into reversible templated ligation and loop formation. Organic and Biomolecular Chemistry, 2018, 16, 8824-8830.	2.8	14
125	First insights into the structural features of Ebola virus methyltransferase activities. Nucleic Acids Research, 2021, 49, 1737-1748.	14.5	14
126	2-Amino-α-2′-deoxyadenosine increased duplex stability of methoxyethylphosphoramidate α-Oligodeoxynucleotides with RNA target. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 1435-1438.	2.2	13

#	Article	IF	CITATIONS
127	$3\hat{a}\in^2$ -Deoxy Phosphoramidate Dinucleosides as Improved Inhibitors of Hepatitis C Virus Subgenomic Replicon and NS5B Polymerase Activity. Journal of Medicinal Chemistry, 2010, 53, 6608-6617.	6.4	13
128	α,βâ€Unsaturated 2â€Acylâ€Imidazoles in Asymmetric Biohybrid Catalysis. ChemCatChem, 2019, 11, 5686-570	4.3.7	13
129	H-Phosphonate oligonucleotides from phosphoramidite chemistry. Tetrahedron Letters, 2004, 45, 3745-3748.	1.4	12
130	Lewis acid deprotection of silyl-protected oligonucleotides and base-sensitive oligonucleotide analogues. Tetrahedron Letters, 2004, 45, 6287-6290.	1.4	12
131	Phosphoramidate Dinucleosides as Hepatitis C Virus Polymerase Inhibitors. Journal of Medicinal Chemistry, 2008, 51, 5745-5757.	6.4	12
132	Measurement of Enzymatic Activity and Specificity of Human and Avian Influenza Neuraminidases from Whole Virus by Glycoarray and MALDIâ€∓OF Mass Spectrometry. ChemBioChem, 2011, 12, 2071-2080.	2.6	12
133	Effects of the Surface Densities of Glycoclusters on the Determination of Their IC ₅₀ and <i>K</i> _d Value Determination by Using a Microarray. ChemBioChem, 2015, 16, 2329-2336.	2.6	12
134	An Entry of the Chemoselective Sulfo-Click Reaction into the Sphere of Nucleic Acids. Organic Letters, 2020, 22, 1914-1918.	4.6	12
135	The C-Terminal Domain of the Sudan Ebolavirus L Protein Is Essential for RNA Binding and Methylation. Journal of Virology, 2020, 94, .	3.4	12
136	Analysis of solid-supported oligonucleotides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry., 2000, 14, 234-242.		11
137	FTIR and UV Spectroscopy Studies of Triplex Formation Between α-Oligonucleotides with Non-Ionic Phoshoramidate Linkages and DNA Targets. Journal of Biomolecular Structure and Dynamics, 2003, 21, 435-445.	3 . 5	11
138	Chemical Synthesis of RNA with Base‣abile 2′―O â€(Pivaloyloxymethyl)â€Protected Ribonucleoside Phosphoramidites. Current Protocols in Nucleic Acid Chemistry, 2010, 43, Unit3.19.	0.5	11
139	Direct Synthesis of Partially Modified 2′â€∢i>O â€Pivaloyloxymethyl RNAs by a Baseâ€Labile Protecting Group Strategy and their Potential for Prodrugâ€Based Geneâ€Silencing Applications. ChemBioChem, 2014, 15, 2674-2679.	2.6	11
140	Efficient one-pot, three-component procedure to prepare new \hat{i}_{\pm} -aminophosphonate and phosphonic acid acyclic nucleosides. Nucleosides, Nucleotides and Nucleic Acids, 2021, 40, 43-67.	1.1	11
141	Folding of phosphodiester-linked donor–acceptor oligomers into supramolecular nanotubes in water. Chemical Communications, 2021, 57, 4130-4133.	4.1	11
142	The methyltransferase domain of the Respiratory Syncytial Virus L protein catalyzes cap N7 and $2\hat{a}\in^{TM}$ -O-methylation. PLoS Pathogens, 2021, 17, e1009562.	4.7	11
143	Charge-Transfer Interactions Stabilize G-Quadruplex-Forming Thrombin Binding Aptamers and Can Improve Their Anticoagulant Activity. International Journal of Molecular Sciences, 2021, 22, 9510.	4.1	11
144	Applications of the Reversible Boronic Acids/Boronate Switch to Nucleic Acids. Chemical Record, 2022, 22, .	5.8	11

#	Article	IF	CITATIONS
145	Convenient synthesis of N2-isobutyryl-2′-O-methyl guanosine by efficient alkylation of O6-trimethylsilylethyl-3′,5′-di-tert-butylsilanediyl guanosine. Tetrahedron, 2007, 63, 11174-11178.	1.9	10
146	Synthesis and structural characterization of monomeric and dimeric peptide nucleic acids prepared by using microwave-promoted multicomponent reactions. Organic and Biomolecular Chemistry, 2015, 13, 11052-11071.	2.8	10
147	DNAâ€Based Asymmetric Inverse Electronâ€Demand Heteroâ€Diels–Alder. Chemistry - A European Journal, 2020, 26, 3519-3523.	3.3	10
148	Synthesis and Antiviral Activity of Some C2-, C4-, and C6-Substituted Pyrazolo[3,4-D]Pyrimidine Acyclonucleosides with the Alkylating Chains of ACV, HBG, and ISO-DHPG. Nucleosides, Nucleotides and Nucleic Acids, 2006, 25, 849-860.	1.1	9
149	Effect of DNA Modifications on DNA Processing by HIV-1 Integrase and Inhibitor Binding. Journal of Biological Chemistry, 2006, 281, 32428-32438.	3.4	9
150	Sequential Seyferth-Gilbert/CuAAC Reactions: Application to the One-Pot Synthesis of Triazoles from Aldehydes. Synlett, 2007, 2007, 3037-3041.	1.8	9
151	Efficient Release of Baseâ€Sensitive Oligonucleotides from Solid Supports using Fluoride Ions. European Journal of Organic Chemistry, 2009, 2009, 2190-2194.	2.4	9
152	Synthesis of New Lipoic Acid Conjugates and Evaluation of Their Free Radical Scavenging and Neuroprotective Activities. Chemical Biology and Drug Design, 2014, 83, 688-696.	3.2	9
153	Synthesis, binding, nuclease resistance and cellular uptake properties of $2\hat{a}\in^{2}$ - O -acetalester-modified oligonucleotides containing cationic groups. Bioorganic and Medicinal Chemistry, 2015, 23, 5360-5368.	3.0	9
154	Glycoclusters with Additional Functionalities for Binding to the LecA Lectin from <i>Pseudomonas aeruginosa</i> . ChemistrySelect, 2017, 2, 10420-10427.	1.5	9
155	Gymnotic delivery and gene silencing activity of reduction-responsive siRNAs bearing lipophilic disulfide-containing modifications at 2′-position. Bioorganic and Medicinal Chemistry, 2018, 26, 4635-4643.	3.0	9
156	Conjugation of Small Molecules to RNA Using a Reducible Disulfide Linker Attached at the 2â€2â€OH Position through a Carbamate Function. European Journal of Organic Chemistry, 2019, 2019, 5636-5645.	2.4	9
157	Rapid and specific DNA detection by magnetic field-enhanced agglutination assay. Talanta, 2020, 219, 121344.	5.5	9
158	Apurinic DNA reactivity: Modelisation of apurinic DNA breakage with phenylhydrazine and formation of a pyrazole adduct. Journal of Heterocyclic Chemistry, 1988, 25, 389-392.	2.6	8
159	Optimized Synthesis of Functionalized Fluorescent Oligodeoxynucleotides for Protein Labeling. Bioconjugate Chemistry, 2005, 16, 465-470.	3.6	8
160	A One-Pot Synthesis of D-Ribonucleosides Using Natural Phosphate Doped with KI in HMDS. Letters in Organic Chemistry, 2006, 3, 313-314.	0.5	8
161	Click chemistry and Oligonucleotides: How a simple reaction can do so much. Nucleic Acids Symposium Series, 2008, 52, 47-48.	0.3	8
162	One-Pot Synthesis of Antiviral Acyclovir and Other Nucleosides Derivatives Using Doped Natural Phosphate as Lewis Acid Catalyst. Nucleosides, Nucleotides and Nucleic Acids, 2008, 27, 1107-1112.	1.1	8

#	Article	IF	Citations
163	An innovative strategy for sulfopeptides analysis using <scp>MALDI</scp> â€ <scp>TOF MS</scp> reflectron positive ion mode. Proteomics, 2012, 12, 2247-2257.	2.2	8
164	Dynamic boronic acid-mediated autoligation of DNA strands. Pure and Applied Chemistry, 2012, 84, 1659-1667.	1.9	8
165	Borononucleotides as Substrates/Binders for Human NMP Kinases: Enzymatic and Spectroscopic Evaluation. ChemBioChem, 2012, 13, 1605-1612.	2.6	8
166	RNA-directed off/on switch of RNase H activity using boronic ester formation. Organic and Biomolecular Chemistry, 2017, 15, 8204-8210.	2.8	8
167	A $2\hat{a}\in ^2$, $2\hat{a}\in ^2$ -disulfide-bridged dinucleotide conformationally locks RNA hairpins. Organic and Biomolecular Chemistry, 2018, 16, 3181-3188.	2.8	8
168	Screening of a Library of Oligosaccharides Targeting Lectin LecB of Pseudomonas Aeruginosa and Synthesis of High Affinity Oligoglycoclusters. Molecules, 2018, 23, 3073.	3.8	8
169	DNAâ€√emplated [2+2] Photocycloaddition: A Straightforward Entry into the Aplysinopsin Family of Natural Products. Angewandte Chemie, 2018, 130, 11960-11965.	2.0	8
170	Solid Supports for the Synthesis of $3\hat{a}\in^2$ -Aminooxy Deoxy- or Ribo-oligonucleotides and Their $3\hat{a}\in^2$ -Conjugation by Oxime Ligation. Journal of Organic Chemistry, 2019, 84, 14854-14860.	3.2	8
171	Glycoarray by DNA-Directed Immobilization. Methods in Molecular Biology, 2012, 808, 195-219.	0.9	8
172	9-Aminoellipticine-Derivatized \hat{l}_{\pm} - and \hat{l}^2 -Oligodeoxyribonucleotides Targeted to the Cap of \hat{l}^2 -Globin mRNA: Hybridization to Natural and Engineered mRNA, Inhibition of Translation, and Improved Effect of Tandem Chains. Antisense Research and Development, 1992, 2, 279-292.	3.1	7
173	Prooligonucleotide metabolism in a crude cell extract followed by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. , 1999, 13, 1645-1649.		7
174	Deoxygenation of 5-O-benzoyl-1,2-isopropylidene-3-O-imidazolylthiocarbonyl-α-d-xylofuranose using dimethyl phosphite: an efficient alternate method towards a 3′-deoxynucleoside glycosyl donor. Tetrahedron Letters, 2008, 49, 3288-3290.	1.4	7
175	Incorporation of Oxidized Guanine Nucleoside 5′-Triphosphates in DNA with DNA Polymerases and Preparation of Single-Lesion Carrying DNA. Biochemistry, 2008, 47, 4788-4799.	2.5	7
176	Nuclease stability of boron-modified nucleic acids: application to label-free mismatch detection. Organic and Biomolecular Chemistry, 2015, 13, 10604-10608.	2.8	7
177	Lipophilic 2′â€∢i>O∢/i>â€Acetal Ester RNAs: Synthesis, Thermal Duplex Stability, Nuclease Resistance, Cellular Uptake, and siRNA Activity after Spontaneous Naked Delivery. ChemBioChem, 2016, 17, 2054-2062.	2.6	7
178	Template-directed excimer formation via specific non-covalent interactions between pyrene guanidinium derivatives and nucleic acids. Tetrahedron Letters, 2018, 59, 295-298.	1.4	7
179	Combining Chemical Synthesis and Enzymatic Methylation to Access Short RNAs with Various 5′ Caps. ChemBioChem, 2019, 20, 1693-1700.	2.6	7
180	Boronic Acidâ€Mediated Activity Control of Split 10–23 DNAzymes. Chemistry - A European Journal, 2021, 27, 1138-1144.	3.3	7

#	Article	IF	Citations
181	Use of Photolabile Amino-Protecting Groups in the Synthesis of Base-Sensitive DNA SATE-Phosphotriesters. Nucleosides & Nucleotides, 1999, 18, 1435-1436.	0.5	6
182	FTIR and UV Spectroscopy Studies of Triplex Formation Between Pyrimidine Methoxyethylphosphoramidates α- Oligodeoxynucleotides and ds DNA Targets. Journal of Biomolecular Structure and Dynamics, 2002, 19, 1073-1081.	3.5	6
183	Use of a solid-supported coupling reagent for a selective phosphitylation of the primary alcohol of N2-isobutyryl-2′-deoxy or 2′-O-methyl guanosine. Tetrahedron Letters, 2006, 47, 8379-8382.	1.4	6
184	5-Propynylamino \hat{l} ±-deoxyuridine promotes DNA duplex stabilization of anionic and neutral but not cationic \hat{l} ±-oligonucleotides. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 951-954.	2.2	6
185	Synthesis and Biological Evaluation of Some α-[6-(1′-Carbamoylalkylthio)-1H-Pyrazolo[3,4-D]Pyrimidin-4-yl]Thioalkylcarboxamide Acyclonucleosides. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 335-345.	1.1	6
186	Phthalimide–Oxy Derivatives for 3′―or 5′â€Conjugation of Oligonucleotides by Oxime Ligation and Circularization of DNA by "Bis―or Trisâ€Click―Oxime Ligation. European Journal of Organic Chemistry, 2017, 2017, 6931-6941.	2.4	6
187	Solidâ€Phase Synthesis of Oligonucleotide 5′â€(αâ€×i>Pâ€Thio)triphosphates and 5′â€(αâ€×i>P615 ja€²â€(αâ€×i>P72 ja€Thio)(l²,γâ€methylene)triphosphates. European Journal of Organic Chemistry, 2015, 2015	, 3 62-308.	5
188	Synthesis of Adenine Dinucleosides 2′,5′â€Bridged by Sulfurâ€Containing Linkers as Bisubstrate SAM Analogues for Viral RNA 2′â€∢i>O⟨/i>â€Methyltransferases. European Journal of Organic Chemistry, 2019, 2019, 6486-6495.	2.4	5
189	A Procedure for Facile Synthesis of Nucleosides Using N, O-Bistrimethylsilylacetamide in the Presence of Natural Phosphate Coated with Potassium Iodide. Letters in Organic Chemistry, 2010, 7, 196-199.	0.5	4
190	Boronic acid-based autoligation of nucleic acids: influence of the nature of the 3′-end ribonucleotidic strand. Monatshefte Für Chemie, 2013, 144, 495-500.	1.8	4
191	Solid-phase synthesis of 5′-triphosphate 2′-5′-oligoadenylates analogs with 3′-O-biolabile groups and their evaluation as RNase L activators and antiviral drugs. Bioorganic and Medicinal Chemistry, 2013, 21, 5461-5469.	3.0	4
192	Synthesis and structure of methylene(dimethylhydrazo) linked thymidine dimer and their utility as antisense oligonucleotides. Collection of Czechoslovak Chemical Communications, 1993, 58, 158-162.	1.0	4
193	Apurinic DNA: Modelisation and Reactivity Towards 9-Aminoellipticine and Related Amines. Nucleosides, Nucleotides and Nucleic Acids, 1989, 8, 863-866.	1.1	3
194	KINETICS STUDY OF THE BIOTRANSFORMATION OF AN OLIGONUCLEOTIDE PRODRUG IN CELLS EXTRACT BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION TIME-OF-FLIGHT MASS SPECTROMETRY. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 1159-1163.	1.1	3
195	Contribution to PNA–RNA Chimera Synthesis: Oneâ€Pot Microwaveâ€Assisted Ugi Reaction to Obtain Dimeric Building Blocks. European Journal of Organic Chemistry, 2017, 2017, 469-475.	2.4	3
196	Difluorophosphonylated Allylic Ether Moiety as a 2′-Modification of RNA-Type Molecules: Synthesis, Thermal, and Metabolic Studies. Organic Letters, 2019, 21, 4803-4807.	4.6	3
197	Thermolytic Reagents to Synthesize 5′―or 3′â€Mono(thio)phosphate Oligodeoxynucleotides or 3′â€mo oligodeoxynucleotides. European Journal of Organic Chemistry, 2019, 2019, 2832-2842.	dified 2.4	3
198	An Innovative Multiplexed and Flexible Molecular Approach for the Differential Detection of Arboviruses. Journal of Molecular Diagnostics, 2019, 21, 81-88.	2.8	3

#	Article	IF	CITATIONS
199	Modified Galacto―or Fuco lusters Exploiting the Siderophore Pathway to Inhibit the LecA―or LecBâ€Associated Virulence of Pseudomonas aeruginosa. ChemBioChem, 2020, 21, 3433-3448.	2.6	3
200	Diagnostic Performance of a Magnetic Field-Enhanced Agglutination Readout in Detecting Either Viral Genomes or Host Antibodies in Arbovirus Infection. Microorganisms, 2021, 9, 674.	3.6	3
201	Combining a cationic phosphoramidate backbone and $\hat{l}\pm$ -anomeric nucleosides provides oligonucleotides with improved hybridization and cell uptake properties. , 2005, , .		3
202	Inverse solid phase synthesis of oligonucleotides. , 2008, , .		3
203	Direct Access to Unique Câ€5'â€Acyl Modified Nucleosides through Liebeskind–Srogl Crossâ€Coupling Reaction. European Journal of Organic Chemistry, 2022, 2022, .	2.4	3
204	Bisubstrate Strategies to Target Methyltransferases. European Journal of Organic Chemistry, 2022, 2022, .	2.4	3
205	Carbohydrates as Recognition Receptors in Biosensing Applications., 2010,, 275-341.		2
206	Synthesis of a Glycomimetic Oligonucleotide Conjugate by 1,3-Dipolar Cycloaddition. Methods in Molecular Biology, 2011, 751, 167-193.	0.9	2
207	The biolabile 2′-O-pivaloyloxymethyl modification in an RNA helix: an NMR solution structure. Organic and Biomolecular Chemistry, 2013, 11, 2638.	2.8	2
208	Assessment of the Full Compatibility of Copper(I)â€Catalyzed Alkyneâ€Azide Cycloaddition and Oxime Click Reactions for bisâ€Labelling of Oligonucleotides. ChemistryOpen, 2015, 4, 169-173.	1.9	2
209	Synthesis of $3\hat{a}\in^2$ -deoxy- $3\hat{a}\in^2$ -iminodiacetic acid and $3\hat{a}\in^2$ -deoxy- $3\hat{a}\in^2$ -aminodiethanol thymidine analogues and N study of their complexation with boronic acids. Tetrahedron, 2017, 73, 2468-2475.	IMR 1.9	2
210	The Sulfoâ€Click Reaction and Dual Labeling of Nucleosides. Current Protocols in Nucleic Acid Chemistry, 2020, 83, e120.	0.5	2
211	Design and NMR characterization of reversible head-to-tail boronate-linked macrocyclic nucleic acids. Organic and Biomolecular Chemistry, 2022, 20, 2889-2895.	2.8	2
212	MICROWAVES SYNTHESIS OF SOLID SUPPORTS FOR THE SYNTHESIS OF 3′-AMINOALKYL OLIGODEOXYNUCLEOTIDES. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 623-627.	1.1	1
213	A Universal and Recyclable Solid Support for Oligonucleotide Synthesis. Current Protocols in Nucleic Acid Chemistry, 2007, 30, Unit 3.16.	0.5	1
214	Carbohydrateâ€Oligonucleotide Conjugates. Current Protocols in Nucleic Acid Chemistry, 2009, 39, Unit4.38.	0.5	1
215	Deciphering multivalent glycocluster–lectin interactions through AFM characterization of the self-assembled nanostructures. Soft Matter, 2019, 15, 7211-7218.	2.7	1
216	Synthesis and Biophysical Properties of Oligothymidylates Containing Alkoxyphosphoramidate Internucleoside Linkages. Nucleosides, Nucleotides and Nucleic Acids, 1995, 14, 1061-1064.	1.1	0

#	Article	IF	CITATIONS
217	Solution-Phase Synthesis of Di- and Trinucleotides Using Polymer-Supported Reagents. , 2006, Chapter 3, 3.14.1-3.14.15.		O
218	MALDI-TOF Detection of Specific Noncovalent Complexes of Highly Acidic Biomolecules with Pyrenemethylguanidinium., 2009,, 371-395.		0
219	Innovative Chemistry for Synthesis of Regular RNA, 5′-Triphosphate RNA, or 5′-Capped RNA. , 2014, , 563-589.		0
220	Universal and reusable solide support thanks to a H-phosphonate diester linkage for the synthesis of single or multiple oligonucleotides. , 2005, , .		0
221	Reversible DNA-templated formation of a boronate internucleosidic linkage depending on external stimuli., 2011,,.		O
222	A straightforward synthesis of RNA prodrugs bearing biolabile pivaloyloxymethyl groups. , 2014, , .		0
223	Solid-phase synthesis of 5'-capped mRNA with a methylene bridge within triphosphate chain. , 2014, , .		O
224	3'-Iminodiacetic acid and 3'-aminodiethanol 3'-deoxy thymidine for DNA templated boronate ligation 2014, , .	n.,	0
225	Solid-phase synthesis of 5'-capped mRNA with a phosphorothioate modification within triphosphate bridge. , 2014, , .		O
226	Oligonucleotide Conjugation by Tyrosineâ€Click Reaction. European Journal of Organic Chemistry, 0, , .	2.4	O