Silke Hauf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/449222/publications.pdf

Version: 2024-02-01

4,181 35 citations papers

361413 377865 20 h-index g-index

46 46 all docs docs citations

46 times ranked

3895 citing authors

34

#	Article	IF	CITATIONS
1	Mutation and selection explain why many eukaryotic centromeric DNA sequences are often AÂ+ÂT rich. Nucleic Acids Research, 2022, 50, 579-596.	14.5	6
2	Cdc48 influence on separase levels is independent of mitosis and suggests translational sensitivity of separase. Cell Reports, 2022, 38, 110554.	6.4	0
3	Mitotic checkpoint gene expression is tuned by codon usage bias. EMBO Journal, 2022, 41, .	7.8	6
4	Pomegranate: 2D segmentation and 3D reconstruction for fission yeast and other radially symmetric cells. Scientific Reports, 2020, 10, 16580.	3.3	9
5	Implications of alternative routes to APC/C inhibition by the mitotic checkpoint complex. PLoS Computational Biology, 2018, 14, e1006449.	3.2	6
6	Construction, Growth, and Harvesting of Fission Yeast Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Strains. Cold Spring Harbor Protocols, 2017, 2017, pdb.prot091678.	0.3	5
7	Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)-Based Quantitative Proteomics and Phosphoproteomics in Fission Yeast. Cold Spring Harbor Protocols, 2017, 2017, pdb.prot091686.	0.3	3
8	Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Technology in Fission Yeast. Cold Spring Harbor Protocols, 2017, 2017, pdb.top079814.	0.3	9
9	Different Functionality of Cdc20 Binding Sites within the Mitotic Checkpoint Complex. Current Biology, 2017, 27, 1213-1220.	3.9	22
10	Time To Split Up: Dynamics of Chromosome Separation. Trends in Cell Biology, 2017, 27, 42-54.	7.9	25
11	Micromanaging checkpoint proteins. ELife, 2017, 6, .	6.0	7
12	MEMO: multi-experiment mixture model analysis of censored data. Bioinformatics, 2016, 32, 2464-2472.	4.1	7
13	Robust Ordering of Anaphase Events by Adaptive Thresholds and Competing Degradation Pathways. Molecular Cell, 2015, 60, 446-459.	9.7	36
14	Mad1 contribution to spindle assembly checkpoint signalling goes beyond presenting <scp>M</scp> ad2 at kinetochores. EMBO Reports, 2014, 15, 291-298.	4.5	57
15	Absolute Proteome and Phosphoproteome Dynamics during the Cell Cycle of Schizosaccharomyces pombe (Fission Yeast). Molecular and Cellular Proteomics, 2014, 13, 1925-1936.	3.8	141
16	Slow Checkpoint Activation Kinetics as a Safety Device in Anaphase. Current Biology, 2014, 24, 646-651.	3.9	17
17	Determinants of robustness in spindle assembly checkpoint signalling. Nature Cell Biology, 2013, 15, 1328-1339.	10.3	92
18	The spindle assembly checkpoint: progress and persistent puzzles. Biochemical Society Transactions, 2013, 41, 1755-1760.	3.4	19

#	Article	IF	CITATIONS
19	Mph1 kinetochore localization is crucial and upstream in the hierarchy of spindle assembly checkpoint protein recruitment to kinetochores. Journal of Cell Science, 2012, 125, 4720-7.	2.0	46
20	A Chemical Genetic Approach for Covalent Inhibition of Analogue-Sensitive Aurora Kinase. ACS Chemical Biology, 2012, 7, 723-731.	3.4	24
21	Repositioning of Aurora B Promoted by Chiasmata Ensures Sister Chromatid Mono-Orientation in Meiosis I. Developmental Cell, 2011, 21, 534-545.	7.0	60
22	Mitotic Substrates of the Kinase Aurora with Roles in Chromatin Regulation Identified Through Quantitative Phosphoproteomics of Fission Yeast. Science Signaling, 2011, 4, rs6.	3.6	105
23	Strategies for the identification of kinase substrates using analog-sensitive kinases. European Journal of Cell Biology, 2010, 89, 184-193.	3.6	24
24	Bub1 and Bub3 promote the conversion from monopolar to bipolar chromosome attachment independently of shugoshin. EMBO Reports, 2009, 10, 1022-1028.	4.5	38
25	Mps1 Checks Up on Chromosome Attachment. Cell, 2008, 132, 181-182.	28.9	1
26	Shugoshin enables tension-generating attachment of kinetochores by loading Aurora to centromeres. Genes and Development, 2007, 21, 420-435.	5.9	177
27	Aurora controls sister kinetochore mono-orientation and homolog bi-orientation in meiosis-I. EMBO Journal, 2007, 26, 4475-4486.	7.8	90
28	Human Bub1 Defines the Persistent Cohesion Site along the Mitotic Chromosome by Affecting Shugoshin Localization. Current Biology, 2005, 15, 353-359.	3.9	233
29	Dissociation of Cohesin from Chromosome Arms and Loss of Arm Cohesion during Early Mitosis Depends on Phosphorylation of SA2. PLoS Biology, 2005, 3, e69.	5.6	382
30	Regulation of Sister Chromatid Cohesion between Chromosome Arms. Current Biology, 2004, 14, 1187-1193.	3.9	199
31	Kinetochore Orientation in Mitosis and Meiosis. Cell, 2004, 119, 317-327.	28.9	108
32	The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore–microtubule attachment and in maintaining the spindle assembly checkpoint. Journal of Cell Biology, 2003, 161, 281-294.	5.2	1,098
33	Fine Tuning of Kinetochor Function by Phosphorylation. Cell Cycle, 2003, 2, 227-228.	2.6	1
34	Cohesin Cleavage by Separase Required for Anaphase and Cytokinesis in Human Cells. Science, 2001, 293, 1320-1323.	12.6	458
35	Two Distinct Pathways Remove Mammalian Cohesin from Chromosome Arms in Prophase and from Centromeres in Anaphase. Cell, 2000, 103, 399-410.	28.9	667