Jocelyn M Biagini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4492083/publications.pdf

Version: 2024-02-01

١			218677	2	223800
	56	2,248	26		46
	papers	citations	h-index		g-index
	58	58	58		3750
	30	36	30		3/30
	all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	TSLP disease-associated genetic variants combined with airway TSLP expression influence asthma risk. Journal of Allergy and Clinical Immunology, 2022, 149, 79-88.	2.9	11
2	Novel role for caspase recruitment domain family member 14 and its genetic variant rs11652075 in skin filaggrin homeostasis. Journal of Allergy and Clinical Immunology, 2022, 149, 708-717.	2.9	6
3	Longitudinal atopic dermatitis endotypes: An atopic march paradigm that includes Black children. Journal of Allergy and Clinical Immunology, 2022, 149, 1702-1710.e4.	2.9	25
4	Vitamin D, skin filaggrin, allergic sensitization, and race: a complex interplay. Annals of Allergy, Asthma and Immunology, 2022, , .	1.0	1
5	Treatment by biomarker-informed endotype vs guideline care in children with difficult-to-treat asthma. Annals of Allergy, Asthma and Immunology, 2022, 128, 535-543.e6.	1.0	2
6	The Pediatric Asthma Risk Score (PARS): more does not mean better. Annals of Allergy, Asthma and Immunology, 2022, , .	1.0	0
7	Increased nasal epithelial cell responsiveness to ILâ€17A in paediatric asthmatics with low blood neutrophil count, low trafficâ€related air pollution exposure and good asthma control. Clinical and Experimental Allergy, 2022, 52, 569-573.	2.9	2
8	Nasal DNA methylation differentiates severe from nonâ€severe asthma in Africanâ€American children. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 1836-1845.	5.7	19
9	Biofilm propensity of <i>Staphylococcus aureus</i> skin isolates is associated with increased atopic dermatitis severity and barrier dysfunction in the MPAACH pediatric cohort. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 302-313.	5.7	33
10	<i>NAT1</i> genetic variation increases asthma risk in children with secondhand smoke exposure. Journal of Asthma, 2021, 58, 284-292.	1.7	6
11	Secondâ€hand smoke and NFE2L2 genotype interaction increases paediatric asthma risk and severity. Clinical and Experimental Allergy, 2021, 51, 801-810.	2.9	11
12	Sensitization to peanut, egg or pets is associated with skin barrier dysfunction in children with atopic dermatitis. Clinical and Experimental Allergy, 2021, 51, 666-673.	2.9	17
13	Weighing in on asthma: Insights on BMI, magnesium, and hospitalizations from the Ohio Pediatric Asthma Repository. Journal of Asthma, 2020, 57, 1280-1287.	1.7	2
14	Disease-associated KIF3A variants alter gene methylation and expression impacting skin barrier and atopic dermatitis risk. Nature Communications, 2020, 11, 4092.	12.8	24
15	Events in Normal Skin Promote Early-Life Atopic Dermatitisâ€"The MPAACH Cohort. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 2285-2293.e6.	3.8	20
16	Atopic dermatitis independently increases sensitization above parental atopy: The MPAACH study. Journal of Allergy and Clinical Immunology, 2020, 145, 1464-1466.	2.9	7
17	Use of the Pediatric Asthma Risk Score to predict allergic and nonallergic asthma. Annals of Allergy, Asthma and Immunology, 2020, 124, 629-631.e2.	1.0	1
18	Simultaneous skin biome and keratinocyte genomic capture reveals microbiome differences by depth of sampling. Journal of Allergy and Clinical Immunology, 2020, 146, 1442-1445.	2.9	13

#	Article	IF	Citations
19	Vitamin D supplementation attenuates asthma development following traffic-related particulate matter exposure. Journal of Allergy and Clinical Immunology, 2019, 143, 386-394.e3.	2.9	33
20	The pediatric asthma risk score (PARS): making the move to the most accurate pediatric asthma risk screening tool. Expert Review of Clinical Immunology, 2019, 15, 1115-1118.	3.0	1
21	Age and early maternal smoking contribute to epithelial cell ILâ€13 responsiveness in a pediatric asthma population. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 2485-2487.	5.7	1
22	Identification of two early life eczema and nonâ€eczema phenotypes with high risk for asthma development. Clinical and Experimental Allergy, 2019, 49, 829-837.	2.9	9
23	A Pediatric Asthma Risk Score to better predict asthma development in young children. Journal of Allergy and Clinical Immunology, 2019, 143, 1803-1810.e2.	2.9	58
24	Nasal DNA methylation is associated with childhood asthma. Epigenomics, 2018, 10, 629-641.	2.1	38
25	High number of early respiratory infections in association with allergic sensitization to mold promotes childhood asthma. Journal of Allergy and Clinical Immunology, 2018, 141, 1921-1924.e4.	2.9	3
26	The antiprotease SPINK7 serves as an inhibitory checkpoint for esophageal epithelial inflammatory responses. Science Translational Medicine, 2018, 10, .	12.4	71
27	\hat{l}^2 -Glucan exacerbates allergic asthma independent of fungal sensitization and promotes steroid-resistant T H 2/T H 17 responses. Journal of Allergy and Clinical Immunology, 2017, 139, 54-65.e8.	2.9	78
28	KIF3A genetic variation is associated with pediatric asthma in the presence of eczema independent of allergic rhinitis. Journal of Allergy and Clinical Immunology, 2017, 140, 595-598.e5.	2.9	18
29	Staphylococcal Biofilms in Atopic Dermatitis. Current Allergy and Asthma Reports, 2017, 17, 81.	5.3	46
30	Nasal DNA methylation differentiates corticosteroid treatment response in pediatric asthma: A pilot study. PLoS ONE, 2017, 12, e0186150.	2.5	35
31	Air pollution, epigenetics, and asthma. Allergy, Asthma and Clinical Immunology, 2016, 12, 51.	2.0	52
32	Ten-eleven translocation 1 (TET1) methylation is associated with childhood asthma and traffic-related air pollution. Journal of Allergy and Clinical Immunology, 2016, 137, 797-805.e5.	2.9	112
33	Air pollution and allergic diseases. Current Opinion in Pediatrics, 2015, 27, 724-735.	2.0	56
34	Genomic architecture of asthma differs by sex. Genomics, 2015, 106, 15-22.	2.9	48
35	Vanin-1 expression and methylation discriminate pediatric asthma corticosteroid treatment response. Journal of Allergy and Clinical Immunology, 2015, 136, 923-931.e3.	2.9	43
36	Heterogeneity in Asthma Care in a Statewide Collaborative: the Ohio Pediatric Asthma Repository. Pediatrics, 2015, 135, 271-279.	2.1	32

#	Article	IF	Citations
37	Exposure to allergen and diesel exhaust particles potentiates secondary allergen-specific memory responses, promoting asthma susceptibility. Journal of Allergy and Clinical Immunology, 2015, 136, 295-303.e7.	2.9	115
38	Early-life mold and tree sensitivity is associated with allergic eosinophilic rhinitis at 4 years of age. Annals of Allergy, Asthma and Immunology, 2015, 114, 193-198.e4.	1.0	9
39	Traffic pollution is associated with early childhood aeroallergen sensitization. Annals of Allergy, Asthma and Immunology, 2015, 114, 126-133.e3.	1.0	49
40	Epistasis between serine protease inhibitor Kazal-type 5 (SPINK5) and thymic stromal lymphopoietin (TSLP) genes contributes to childhood asthma. Journal of Allergy and Clinical Immunology, 2014, 134, 891-899.e3.	2.9	37
41	The Greater Cincinnati Pediatric Clinic Repository: A Novel Framework for Childhood Asthma and Allergy Research. Pediatric, Allergy, Immunology, and Pulmonology, 2012, 25, 104-113.	0.8	23
42	Genetic variation in small proline rich protein 2B as a predictor for asthma among children with eczema. Annals of Allergy, Asthma and Immunology, 2012, 108, 145-150.e4.	1.0	11
43	Unraveling the relationship between aeroallergen sensitization, gender, secondâ€hand smoke exposure, and impaired lung function. Pediatric Allergy and Immunology, 2012, 23, 479-487.	2.6	25
44	Asking the Right Questions to Ascertain Early Childhood Secondhand Smoke Exposures. Journal of Pediatrics, 2012, 160, 1050-1051.	1.8	18
45	Functional Variant in the Autophagy-Related 5 Gene Promotor is Associated with Childhood Asthma. PLoS ONE, 2012, 7, e33454.	2.5	148
46	Differences in Candidate Gene Association between European Ancestry and African American Asthmatic Children. PLoS ONE, 2011, 6, e16522.	2.5	61
47	Identification of KIF3A as a Novel Candidate Gene for Childhood Asthma Using RNA Expression and Population Allelic Frequencies Differences. PLoS ONE, 2011, 6, e23714.	2.5	46
48	Genetic Biomarkers of Health-Related Quality of Life in Pediatric Asthma. Journal of Pediatrics, 2011, 159, 21-26.e1.	1.8	9
49	Eczema in Early Life: Genetics, the Skin Barrier, and Lessons Learned from Birth Cohort Studies. Journal of Pediatrics, 2010, 157, 704-714.	1.8	34
50	Genetic and Environmental Risk Factors for Childhood Eczema Development and Allergic Sensitization in the CCAAPS Cohort. Journal of Investigative Dermatology, 2010, 130, 430-437.	0.7	37
51	Variants of thymic stromal lymphopoietin and its receptor associate with eosinophilic esophagitis. Journal of Allergy and Clinical Immunology, 2010, 126, 160-165.e3.	2.9	236
52	Associations between Multiple Environmental Exposures and Glutathione S-transferase P1 on Persistent Wheezing in a Birth Cohort. Journal of Pediatrics, 2009, 154, 401-408.e1.	1.8	62
53	Effect of asthma on the risk of obstructive sleep apnea syndrome in atopic women. Annals of Allergy, Asthma and Immunology, 2006, 97, 231-235.	1.0	16
54	High prevalence of aeroallergen sensitization among infants of atopic parents. Journal of Pediatrics, 2006, 149, 505-511.	1.8	111

	#	Article	IF	CITATIONS
	55	Environmental risk factors of rhinitis in early infancy. Pediatric Allergy and Immunology, 2006, 17, 278-284.	2.6	94
•	56	Is it traffic type, volume, or distance? Wheezing in infants living near truck and bus traffic. Journal of Allergy and Clinical Immunology, 2005, 116, 279-284.	2.9	173