Hirofumi Tanaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4492061/publications.pdf

Version: 2024-02-01

103 papers 1,869 citations

218677 26 h-index 315739 38 g-index

106 all docs

106 docs citations

106 times ranked 2442 citing authors

#	Article	IF	Citations
1	Emergence of Inâ€Materio Intelligence from an Incidental Structure of a Singleâ€Walled Carbon Nanotube–Porphyrin Polyoxometalate Random Network. Advanced Intelligent Systems, 2022, 4, .	6.1	22
2	In-materio computing in random networks of carbon nanotubes complexed with chemically dynamic molecules: a review. Neuromorphic Computing and Engineering, 2022, 2, 022002.	5.9	9
3	In-materio reservoir working at low frequencies in a Ag ₂ S-island network. Nanoscale, 2022, 14, 7634-7640.	5.6	14
4	Emergence of Inâ€Materio Intelligence from an Incidental Structure of a Singleâ€Walled Carbon Nanotube–Porphyrin Polyoxometalate Random Network. Advanced Intelligent Systems, 2022, 4, 2270014.	6.1	1
5	Performance of Ag–Ag ₂ S core–shell nanoparticle-based random network reservoir computing device. Japanese Journal of Applied Physics, 2021, 60, SCCF02.	1.5	13
6	Crossover point of the field effect transistor and interconnect applications in turbostratic multilayer graphene nanoribbon channel. Scientific Reports, 2021, 11, 10206.	3.3	3
7	Room temperature demonstration of in-materio reservoir computing for optimizing Boolean function with single-walled carbon nanotube/porphyrin-polyoxometalate composite. Applied Physics Express, 2021, 14, 105003.	2.4	11
8	Inâ€Materio Reservoir Computing in a Sulfonated Polyaniline Network. Advanced Materials, 2021, 33, e2102688.	21.0	53
9	Observation of Cu Spin Fluctuations in High-Tc Cuprate Superconductor Nanoparticles Investigated by Muon Spin Relaxation. Nanomaterials, 2021, 11, 3450.	4.1	4
10	Controllable synthesis of MoS2/graphene low-dimensional nanocomposites and their electrical properties. Applied Surface Science, 2020, 504, 144193.	6.1	19
11	Control of the neuromorphic learning behavior based on the aggregation of thiol-protected Ag-Ag ₂ S core–shell nanoparticles. Japanese Journal of Applied Physics, 2020, 59, 015001.	1.5	9
12	Wirelessly powered dielectrophoresis of metal oxide particles using sparkâ€gap Tesla coil. Electrophoresis, 2020, 41, 2159-2165.	2.4	2
13	Frequency dependence dielectrophoresis technique for bridging graphene nanoribbons. Applied Physics Express, 2020, 13, 101004.	2.4	4
14	Facile preparation of hybrid thin films composed of spin-crossover nanoparticles and carbon nanotubes for electrical memory devices. Dalton Transactions, 2019, 48, 7074-7079.	3.3	17
15	Effect of Synthesis Procedure on the Size of Ag/Ag2S Core-Shell Nanoparticles for Memristive Brain-Like Devices. , 2019, , .		O
16	Growth of Free-Standing La ₂ _{-x} Sr _x CuO ₄ Nanoparticles. Materials Science Forum, 2019, 966, 357-362.	0.3	2
17	Three site molecular orbital controlled single-molecule rectifiers based on perpendicularly linked porphyrin–imide dyads. Nanoscale, 2019, 11, 22724-22729.	5.6	5
18	Effects of radical initiators, polymerization inhibitors, and other agents on the sonochemical unzipping of double-walled carbon nanotubes. Japanese Journal of Applied Physics, 2018, 57, 03ED01.	1.5	3

#	Article	IF	CITATIONS
19	Self-assembly and ring-opening metathesis polymerization of cyclic conjugated molecules on highly ordered pyrolytic graphite. Chemical Communications, 2018, 54, 5546-5549.	4.1	8
20	Recent progress on fabrication of memristor and transistor-based neuromorphic devices for high signal processing speed with low power consumption. Japanese Journal of Applied Physics, 2018, 57, 03EA06.	1.5	36
21	Electric property measurement of free-standing SrTiO ₃ nanoparticles assembled by dielectrophoresis. Japanese Journal of Applied Physics, 2018, 57, 06HE07.	1.5	6
22	A molecular neuromorphic network device consisting of single-walled carbon nanotubes complexed with polyoxometalate. Nature Communications, 2018, 9, 2693.	12.8	100
23	Energy gap opening by crossing drop cast single-layer graphene nanoribbons. Nanotechnology, 2018, 29, 315705.	2.6	7
24	Synthesis of very narrow multilayer graphene nanoribbon with turbostratic stacking. Applied Physics Letters, 2017, 110, .	3.3	13
25	Development of haptic based piezoresistive artificial fingertip: Toward efficient tactile sensing systems for humanoids. Materials Science and Engineering C, 2017, 77, 1098-1103.	7.3	18
26	Tuning the electrical property of a single layer graphene nanoribbon by adsorption of planar molecular nanoparticles. Nanotechnology, 2017, 28, 175704.	2.6	8
27	Fabrication of piezoresistive based pressure sensor via purified and functionalized CNTs/PDMS nanocomposite: Toward development of haptic sensors. Sensors and Actuators A: Physical, 2017, 266, 158-165.	4.1	31
28	Development of Frequency Based Taste Receptors Using Bioinspired Glucose Nanobiosensor. Scientific Reports, 2017, 7, 1623.	3.3	8
29	Enhancement of glucose oxide electron-transfer mechanism in glucose biosensor via optimum physical chemistry of functionalized carbon nanotubes. Reviews in Chemical Engineering, 2017, 33, 201-215.	4.4	7
30	Diameter dependence of longitudinal unzipping of single-walled carbon nanotube to obtain graphene nanoribbon. Japanese Journal of Applied Physics, 2017, 56, 06GG12.	1.5	8
31	Sequential experimental strategies of longitudinal unzipping of SWNTs: Selective width of single layer graphene nanoribbon. , 2017, , .		0
32	Spike-based time-domain weighted-sum calculation using nanodevices for low power operation. , 2016, , .		6
33	Correlation of Critical Parameters on Carbon Nanotubes Crystallinity in Chemical Vapor Deposition by Using Renewable Bioresource. Journal of Nanoscience and Nanotechnology, 2016, 16, 8263-8268.	0.9	4
34	Coadsorption of Tb ^{III} –Porphyrin Double-decker Single-molecule Magnets in a Porous Molecular Network: Toward Controlled Alignment of Single-molecule Magnets on a Carbon Surface. Chemistry Letters, 2016, 45, 286-288.	1.3	4
35	Progress on nanoparticle-based carbon nanotube complex: fabrication and potential application. Reviews in Inorganic Chemistry, 2016, 36, .	4.1	1
36	Silicon nanodisk array with a fin field-effect transistor for time-domain weighted sum calculation toward massively parallel spiking neural networks. Applied Physics Express, 2016, 9, 034201.	2.4	14

#	Article	IF	CITATIONS
37	Method for Controlling Electrical Properties of Single-Layer Graphene Nanoribbons via Adsorbed Planar Molecular Nanoparticles. Scientific Reports, 2015, 5, 12341.	3.3	21
38	Effect of Protonation on the Single-molecule-magnet Behavior of a Mixed (Phthalocyaninato)(porphyrinato)terbium Double-decker Complex. Chemistry Letters, 2015, 44, 668-670.	1.3	15
39	Functionality emergence of single molecule electronics. , 2015, , .		0
40	Possible High Efficiency Platform for Biosensors Based on Optimum Physical Chemistry of Carbon Nanotubes. Chemical Vapor Deposition, 2015, 21, 263-266.	1.3	14
41	Vectorial Crystal Growth of Oriented Vertically Aligned Carbon Nanotubes Using Statistical Analysis. Crystal Growth and Design, 2015, 15, 3457-3463.	3.0	29
42	Sequential Phase Transition during Fabricating \hat{l}^2 -Ag₂S Film on Ag Electrode by Wet Chemical Process. E-Journal of Surface Science and Nanotechnology, 2014, 12, 185-188.	0.4	9
43	Thin films of spin-crossover coordination polymers with large thermal hysteresis loops prepared by nanoparticle spin coating. Chemical Communications, 2014, 50, 10074-10077.	4.1	28
44	Switching of Single-Molecule Magnetic Properties of TbIII-Porphyrin Double-Decker Complexes and Observation of Their Supramolecular Structures on a Carbon Surface. Chemistry - A European Journal, 2014, 20, 11237-11237.	3.3	2
45	Switching of Singleâ€Molecule Magnetic Properties of Tb ^{III} –Porphyrin Doubleâ€Decker Complexes and Observation of Their Supramolecular Structures on a Carbon Surface. Chemistry - A European Journal, 2014, 20, 11362-11369.	3.3	28
46	Surface Self-Assembly of <i>Trans</i> -Substituted Porphyrin Double-Decker Complexes Exhibiting Slow Magnetic Relaxation. E-Journal of Surface Science and Nanotechnology, 2014, 12, 124-128.	0.4	6
47	Temperature-Dependent Current–Voltage and Photoresponsive Properties for Semiconducting Nanodevices Fabricated from an Oligothiazole Dithiol and Gold Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 25325-25333.	3.1	9
48	Advanced Photoassisted Atomic Switches Produced Using ITO Nanowire Electrodes and Molten Photoconductive Organic Semiconductors. Advanced Materials, 2013, 25, 5893-5897.	21.0	11
49	Rectification direction inversion in a phosphododecamolybdic acid/single-walled carbon nanotube junction. Journal of Materials Chemistry C, 2013, 1, 1137-1143.	5.5	20
50	Influence of Atmosphere on Photo-Assisted Atomic Switch Operations. Key Engineering Materials, 2013, 596, 116-120.	0.4	1
51	Volatile and nonvolatile selective switching of a photo-assisted initialized atomic switch. Nanotechnology, 2013, 24, 384006.	2.6	24
52	Large Rectification Effect Achieved by a Combination of Carbon Nanotube Junction and Molecule–Carbon Nanotube Interface. Applied Physics Express, 2012, 5, 115102.	2.4	1
53	Novel charge transport in DNA-templated nanowires. Journal of Materials Chemistry, 2012, 22, 13691.	6.7	33
54	Temperature-dependent l–V characteristics for the nanocomposite semiconducting films composed of a thiol end-capped dinuclear macrocyclic complex and Au-NPs bridging 1 μm gap gold electrodes. Dalton Transactions, 2012, 41, 14309.	3.3	2

#	Article	IF	CITATIONS
55	Influence of nanoparticle size to the electrical properties of naphthalenediimide on single-walled carbon nanotube wiring. Nanotechnology, 2012, 23, 215701.	2.6	5
56	Photocurrent and Electronic Activities of Oriented-His-Tagged Photosynthetic Light-Harvesting/Reaction Center Core Complexes Assembled onto a Gold Electrode. Biomacromolecules, 2012, 13, 432-438.	5.4	71
57	Nanoscale diodes composed of single-walled carbon nanotube and physically adsorbed organic molecule nanoparticles. , 2012, , .		1
58	Proton-induced switching of the single molecule magnetic properties of a porphyrin based TbIII double-decker complex. Chemical Communications, 2012, 48, 7796.	4.1	70
59	Entropy-Controlled 2D Supramolecular Structures of <i>N</i> , <i>N</i> èaê²-Bis(<i>n</i> -alkyl)naphthalenediimides on a HOPG Surface. ACS Nano, 2012, 6, 3876-3887.	14.6	58
60	Fabrication of Nanogap Electrodes by the Molecular Lithography Technique. Japanese Journal of Applied Physics, 2011, 50, 035204.	1.5	4
61	Volatile/Nonvolatile Dual-Functional Atom Transistor. Applied Physics Express, 2011, 4, 015204.	2.4	42
62	Fabrication of Nanogap Electrodes by the Molecular Lithography Technique. Japanese Journal of Applied Physics, 2011, 50, 035204.	1.5	2
63	Properties of Thiol Endâ€Capped and Iodineâ€Doped Sexithiophene Disulfide Semiconducting Polymers Bridging Nanogap Gold Electrodes. Advanced Materials, 2010, 22, 2753-2758.	21.0	24
64	Photoassisted Formation of an Atomic Switch. Small, 2010, 6, 1745-1748.	10.0	33
65	Toward sub-20 nm hybrid nanofabrication by combining the molecular ruler method and electron beam lithography. Nanotechnology, 2010, 21, 495304.	2.6	5
66	Spectral, Structural, and Computational Studies of a New Family of Ruthenium(II) Complexes Containing Substituted 1,10â€Phenanthroline Ligands and in situ Electropolymerization of a Phenanthrolineruthenium(II) Complex Bridging Nanogap Gold Electrodes. European Journal of Inorganic Chemistry, 2009, 2009, 1321-1330.	2.0	25
67	A photo-responsive molecular wire composed of a porphyrin polymer and a fullerene derivative. Journal of Materials Chemistry, 2009, 19, 8307.	6.7	21
68	Preparation of organic nanoscrews from simple porphyrin derivatives. Chemical Communications, 2009, , 7411.	4.1	20
69	Preparation of Long Conjugated Porphyrin Polymers with Gold Nanoparticles at Both Ends as Electronic and/or Photonic Molecular Wires. Chemistry Letters, 2009, 38, 542-543.	1.3	5
70	A new utilization of organic molecules for nanofabrication using the molecular ruler method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313-314, 369-372.	4.7	4
71	Scanning tunneling microscopy investigation of vanadyl and cobalt(II) octaethylporphyrin self-assembled monolayer arrays on graphite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313-314, 230-233.	4.7	12
72	Vertical Alignment of Single-Walled Carbon Nanotube Films Formed by Electrophoretic Deposition. Langmuir, 2008, 24, 12936-12942.	3 . 5	27

#	Article	IF	CITATIONS
73	Syntheses, Crystal Structures, and Spectral Properties of a Series of 3,8-Bisphenyl-1,10-phenanthroline Derivatives:  Precursors of 3,8-Bis(4-mercaptophenyl)-1,10-phenanthroline and Its Ruthenium(II) Complex for Preparing Nanocomposite Junctions with Gold Nanoparticles between 1 Î⅓m Gap Gold Electrodes. Inorganic Chemistry, 2008, 47, 468-480.	4.0	36
74	Effects of Metalâ^'lon Complexation for the Self-Assembled Nanocomposite Films Composed of Gold Nanoparticles and 3,8-Bis(terthiophenyl)phenanthroline-Based Dithiols Bridging 1 μm Gap Gold Electrodes: Morphology, Temperature Dependent Electronic Conduction, and Photoresponse. Journal of Physical Chemistry C, 2008, 112, 11513-11526.	3.1	37
75	Title is missing!. Journal of the Vacuum Society of Japan, 2008, 51, 428-432.	0.3	0
76	I-V characteristics of single electron tunneling from symmetric and asymmetric double-barrier tunneling junctions. Applied Physics Letters, 2007, 90, 223112.	3.3	32
77	Visible Fluorescence Induced by the Metal Semiconductor Transition in Composites of Carbon Nanotubes with Noble Metal Nanoparticles. Physical Review Letters, 2007, 99, 167404.	7.8	34
78	Synthesis of Dendron-Protected Porphyrin Wires and Preparation of a One-Dimensional Assembly of Gold Nanoparticles Chemically Linked to the π-Conjugated Wires. Langmuir, 2007, 23, 6365-6371.	3.5	38
79	Size-dependent single electron tunneling effect in Au nanoparticles. Surface Science, 2007, 601, 3907-3911.	1.9	25
80	Refinement of conditions of point-contact current imaging atomic force microscopy for molecular-scale conduction measurements. Nanotechnology, 2007, 18, 095501.	2.6	19
81	Photo-response behavior of Au nano-particle/porphyrin polymer composite device with nano-gapped electrodes. Journal of Materials Science: Materials in Electronics, 2007, 18, 939-942.	2.2	6
82	Electronic Properties of a Single-Walled Carbon Nanotube/150mer-Porphyrin System Measured by Point-Contact Current Imaging Atomic Force Microscopy. Journal of Nanoscience and Nanotechnology, 2006, 6, 1644-1648.	0.9	14
83	Preparation of Very Reactive Thiol-Protected Gold Nanoparticles: Revisiting the Brust-Schiffrin Method. Journal of Nanoscience and Nanotechnology, 2006, 6, 708-712.	0.9	18
84	Synthesis of end-functionalized π-conjugated porphyrin oligomers. Tetrahedron, 2006, 62, 4749-4755.	1.9	8
85	Synthesis and self-assembly of novel porphyrin molecular wires. Thin Solid Films, 2006, 499, 23-28.	1.8	28
86	Molecular Junctions Composed of Oligothiophene Dithiol-Bridged Gold Nanoparticles Exhibiting Photoresponsive Properties. Chemistry - A European Journal, 2006, 12, 607-619.	3.3	53
87	Porphyrin Molecular Nanodevices Wired Using Single-Walled Carbon Nanotubes. Advanced Materials, 2006, 18, 1411-1415.	21.0	74
88	Hybrid Approaches to Nanolithography: Photolithographic Structures with Precise, Controllable Nanometer-Scale Spacings Created by Molecular Rulers. Advanced Materials, 2006, 18, 1020-1022.	21.0	43
89	A Method for the Fabrication of Sculptured Thin Films of Periodic Arrays of Standing Nanorods. Journal of Nanoscience and Nanotechnology, 2006, 6, 3799-3802.	0.9	1
90	Simple Preparation Method for Supramolecular Porphyrin Arrays on Mica Using Air–Water Interface. Japanese Journal of Applied Physics, 2006, 45, 2324-2327.	1.5	4

#	Article	IF	Citations
91	Morphology and Electric Properties of Nonathiophene/Au Nano-Composite Thin Films Formed Between 1µm Gapped Electrodes. Molecular Crystals and Liquid Crystals, 2006, 455, 305-309.	0.9	6
92	Fabrication of nanoscale gaps using a combination of self-assembled molecular and electron beam lithographic techniques. Applied Physics Letters, 2006, 88, 223111.	3.3	60
93	FABRICATION OF PERIODIC STANDING ROD ARRAYS BY THE SHADOW CONE METHOD. International Journal of Nanoscience, 2006, 05, 815-819.	0.7	2
94	Position-Selected Molecular Ruler. Japanese Journal of Applied Physics, 2004, 43, L950-L953.	1.5	25
95	Multi-Curve Fitting Analysis of Temperature-Dependentl-VCurves of Poly-Hexathienylphenanthroline-Bridged Nanogap Electrodes. Japanese Journal of Applied Physics, 2004, 43, L634-L636.	1.5	18
96	Super-Precise Nanolithography Using Multilayer of Self-Assembled Monolayers. Hyomen Kagaku, 2004, 25, 650-655.	0.0	0
97	Advances in nanolithography using molecular rulers. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 3116.	1.6	30
98	Exploiting intermolecular interactions and self-assembly for ultrahigh resolution nanolithography. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 2739.	1.6	35
99	Electronic band structure and magnetism of Fe16N2 calculated by the FLAPW method. Physical Review B, 2000, 62, 15042-15046.	3.2	21
100	Electron Diffraction and Microscopy Study and Band Structure Calculation of Ferromagnetic Iron-Nitride .ALPHA."-Fe16N2 Journal of the Magnetics Society of Japan, 1999, 23, 858-862.	0.4	2
101	Theoretical study of electronic band structures and magnetic property of Fe16N2 based on FLAPW calculations. Journal of Magnetism and Magnetic Materials, 1998, 177-181, 1468-1469.	2.3	3
102	Electron crystallography study of tempered iron-nitrogen martensite and structure refinement of precipitated $\hat{l}\pm\hat{a}\in S^3$ -Fe16N2. Acta Materialia, 1997, 45, 1401-1410.	7.9	29
103	Variable Range Hopping Resistivity in La ₂₋ <l>_xSr<i>_x<td>gt;@սՓ<</td><td>sub>4<</td></i></l>	gt; @ ս Փ <	sub>4<

Variable Range Hopping Resistivity in
O3 La<sub>2-</sub><i><sub>x</sub></i>Sr<i><sub>x</sub></i>\(\Omega_\text{\text{\$\tex{\$\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{