Min Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4491597/publications.pdf Version: 2024-02-01

MINLIII

#	Article	IF	CITATIONS
1	Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study. Brain, 2018, 141, 391-408.	7.6	352
2	A Zebrafish Embryo Culture System Defines Factors that Promote Vertebrate Myogenesis across Species. Cell, 2013, 155, 909-921.	28.9	144
3	White matter abnormalities across different epilepsy syndromes in adults: an ENIGMA-Epilepsy study. Brain, 2020, 143, 2454-2473.	7.6	123
4	The spectrum of structural and functional imaging abnormalities in temporal lobe epilepsy. Annals of Neurology, 2016, 80, 142-153.	5.3	116
5	The superficial white matter in temporal lobe epilepsy: a key link between structural and functional network disruptions. Brain, 2016, 139, 2431-2440.	7.6	85
6	Temporal lobe epilepsy. Neurology, 2019, 92, e2209-e2220.	1.1	80
7	Disrupted anatomic white matter network in left mesial temporal lobe epilepsy. Epilepsia, 2014, 55, 674-682.	5.1	74
8	White matter abnormalities associate with type and localization of focal epileptogenic lesions. Epilepsia, 2015, 56, 125-132.	5.1	63
9	Preferential susceptibility of limbic cortices to microstructural damage in temporal lobe epilepsy: A quantitative T1 mapping study. NeuroImage, 2018, 182, 294-303.	4.2	63
10	Mesial temporal sclerosis is linked with more widespread white matter changes in temporal lobe epilepsy. NeuroImage: Clinical, 2012, 1, 99-105.	2.7	59
11	Distinct white matter abnormalities in different idiopathic generalized epilepsy syndromes. Epilepsia, 2011, 52, 2267-2275.	5.1	55
12	The acute phase of Wallerian degeneration: Longitudinal diffusion tensor imaging of the fornix following temporal lobe surgery. NeuroImage, 2013, 74, 128-139.	4.2	52
13	The <scp>ENIGMAâ€Epilepsy</scp> working group: Mapping disease from large data sets. Human Brain Mapping, 2022, 43, 113-128.	3.6	47
14	Antimicrobial Peptide Combined with BMP2-Modified Mesenchymal Stem Cells Promotes Calvarial Repair in an Osteolytic Model. Molecular Therapy, 2018, 26, 199-207.	8.2	39
15	Maturation Along White Matter Tracts in Human Brain Using a Diffusion Tensor Surface Model Tract-Specific Analysis. Frontiers in Neuroanatomy, 2016, 10, 9.	1.7	37
16	RGS12 is required for the maintenance of mitochondrial function during skeletal development. Cell Discovery, 2020, 6, 59.	6.7	31
17	Gray matter structural compromise is equally distributed in left and right temporal lobe epilepsy. Human Brain Mapping, 2016, 37, 515-524.	3.6	30
18	Whole Body Periodic Acceleration Is an Effective Therapy to Ameliorate Muscular Dystrophy in mdx Mice. PLoS ONE, 2014, 9, e106590.	2.5	25

Min Liu

#	Article	IF	CITATIONS
19	Selective Retinoic Acid Receptor γ Agonists Promote Repair of Injured Skeletal Muscle in Mouse. American Journal of Pathology, 2015, 185, 2495-2504.	3.8	22
20	A systemsâ€level analysis highlights microglial activation as a modifying factor in common epilepsies. Neuropathology and Applied Neurobiology, 2022, 48, .	3.2	22
21	Topographic principles of cortical fluidâ€attenuated inversion recovery signal in temporal lobe epilepsy. Epilepsia, 2018, 59, 627-635.	5.1	19
22	Ciliary IFT80 regulates dental pulp stem cells differentiation by FGF/FGFR1 and Hh/BMP2 signaling. International Journal of Biological Sciences, 2019, 15, 2087-2099.	6.4	19
23	RCS12 is a novel tumor suppressor in osteosarcoma that inhibits YAP-TEAD1-Ezrin signaling. Oncogene, 2021, 40, 2553-2566.	5.9	19
24	Gamma-sarcoglycan is required for the response of archvillin to mechanical stimulation in skeletal muscle. Human Molecular Genetics, 2015, 24, 2470-2481.	2.9	17
25	Diabetes impairs fracture healing through disruption of cilia formation in osteoblasts. Bone, 2021, 153, 116176.	2.9	12
26	FOXO1 expression in chondrocytes modulates cartilage production and removal in fracture healing. Bone, 2021, 148, 115905.	2.9	5
27	Functional muscle hypertrophy by increased insulinâ€like growth factor 1 does not require dysferlin. Muscle and Nerve, 2019, 60, 464-473.	2.2	4
28	Imaging White Matter Pathology in Epilepsy. , 2019, , 68-76.		0

Imaging White Matter Pathology in Epilepsy. , 2019, , 68-76. 28