AntÃ³nio J S Fernandes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4491110/publications.pdf Version: 2024-02-01

		117625	197818
151	3,749	34	49
papers	citations	h-index	g-index
152	152	152	3638
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A critical review on the production and application of graphene and graphene-based materials in anti-corrosion coatings. Critical Reviews in Solid State and Materials Sciences, 2022, 47, 309-355.	12.3	45
2	A Review on the Applications of Graphene in Mechanical Transduction. Advanced Materials, 2022, 34, e2101326.	21.0	59
3	Laserâ€Induced Graphene from Paper by Ultraviolet Irradiation: Humidity and Temperature Sensors. Advanced Materials Technologies, 2022, 7, .	5.8	39
4	Conversion of paper and xylan into laser-induced graphene for environmentally friendly sensors. Diamond and Related Materials, 2022, 123, 108855.	3.9	20
5	Cobalt Phosphotungstate-Based Composites as Bifunctional Electrocatalysts for Oxygen Reactions. Catalysts, 2022, 12, 357.	3.5	7
6	Laser-induced graphene from paper for non-enzymatic uric acid electrochemical sensing in urine. Carbon, 2022, 197, 253-263.	10.3	32
7	Photonic smart bandage for wound healing assessment. Photonics Research, 2021, 9, 272.	7.0	76
8	Laser-Induced Graphene from Paper for Mechanical Sensing. ACS Applied Materials & Interfaces, 2021, 13, 10210-10221.	8.0	115
9	IR and UV Laserâ€Induced Graphene: Application as Dopamine Electrochemical Sensors. Advanced Materials Technologies, 2021, 6, 2100007.	5.8	58
10	Dual Transduction of H2O2 Detection Using ZnO/Laser-Induced Graphene Composites. Chemosensors, 2021, 9, 102.	3.6	13
11	Electrochemical Response of Glucose Oxidase Adsorbed on Laser-Induced Graphene. Nanomaterials, 2021, 11, 1893.	4.1	17
12	Electrochemical and photoluminescence response of laser-induced graphene/electrodeposited ZnO composites. Scientific Reports, 2021, 11, 17154.	3.3	13
13	Decorating MOF-74-derived nanocarbons with a sandwich-type polyoxometalate to enhance their OER activity: Exploring the underestimated bulk-deposition approach. Electrochimica Acta, 2021, 389, 138719.	5.2	16
14	Boron Doped Diamond for Real-Time Wireless Cutting Temperature Monitoring of Diamond Coated Carbide Tools. Materials, 2021, 14, 7334.	2.9	5
15	Comparative Study of γ- and e-Radiation-Induced Effects on FBCs Using Different Femtosecond Laser Inscription Methods. Sensors, 2021, 21, 8379.	3.8	6
16	Millimeter-sized few-layer suspended graphene membranes. Applied Materials Today, 2020, 21, 100879.	4.3	14
17	Millimeter sized graphene domains through in situ oxidation/reduction treatment of the copper substrate. Carbon, 2020, 169, 403-415.	10.3	8
18	Perfluorinated fiber material properties following femtosecond laser inscription. Optical Materials, 2020, 109, 110412.	3.6	3

#	Article	IF	CITATIONS
19	Laserâ€Induced Graphene Piezoresistive Sensors Synthesized Directly on Cork Insoles for Gait Analysis. Advanced Materials Technologies, 2020, 5, 2000630.	5.8	53
20	Laser-Induced Hematite/Magnetite Phase Transformation. Journal of Electronic Materials, 2020, 49, 7187-7193.	2.2	8
21	Identification of microplastics in white wines capped with polyethylene stoppers using micro-Raman spectroscopy. Food Chemistry, 2020, 331, 127323.	8.2	95
22	Nd:YAG laser scribed zinc oxide on semi-flexible copper foils. Materials Letters: X, 2020, 5, 100038.	0.7	0
23	ZnO decorated laser-induced graphene produced by direct laser scribing. Nanoscale Advances, 2019, 1, 3252-3268.	4.6	23
24	Towards efficient oxygen reduction reaction electrocatalysts through graphene doping. Electrochimica Acta, 2019, 319, 72-81.	5.2	30
25	Physical Structure and Electrochemical Response of Diamond–Graphite Nanoplatelets: From CVD Synthesis to Label-Free Biosensors. ACS Applied Materials & Interfaces, 2019, 11, 8470-8482.	8.0	16
26	A review on the laser-assisted flow deposition method: growth of ZnO micro and nanostructures. CrystEngComm, 2019, 21, 1071-1090.	2.6	23
27	Thermoelectric performance of Nb-doped SrTiO3 enhanced by reduced graphene oxide and Sr deficiency cooperation. Carbon, 2019, 143, 215-222.	10.3	69
28	Polyoxometalateâ€graphene Electrocatalysts for the Hydrogen Evolution Reaction. ChemElectroChem, 2018, 5, 273-283.	3.4	59
29	(Lu _{0.3} Gd _{0.7}) ₂ SiO ₅ :Y ³⁺ single crystals grown by the laser floating zone method: structural and optical studies. CrystEngComm, 2018, 20, 7386-7394.	2.6	11
30	Laserâ€Induced Graphene Strain Sensors Produced by Ultraviolet Irradiation of Polyimide. Advanced Functional Materials, 2018, 28, 1805271.	14.9	228
31	Tuning the surface chemistry of graphene flakes: new strategies for selective oxidation. RSC Advances, 2017, 7, 14290-14301.	3.6	83
32	Diamond-Graphite Nanoplatelet Surfaces as Conductive Substrates for the Electrical Stimulation of Cell Functions. ACS Applied Materials & amp; Interfaces, 2017, 9, 1331-1342.	8.0	18
33	Direct Synthesis of Electrowettable Carbon Nanowall–Diamond Hybrid Materials from Sacrificial Ceramic Templates Using HFCVD. Advanced Materials Interfaces, 2017, 4, 1700019.	3.7	16
34	Composite Materials: Direct Synthesis of Electrowettable Carbon Nanowall–Diamond Hybrid Materials from Sacrificial Ceramic Templates Using HFCVD (Adv. Mater. Interfaces 10/2017). Advanced Materials Interfaces, 2017, 4, .	3.7	0
35	Biphasic apatite-carbon materials derived from pyrolysed fish bones for effective adsorption of persistent pollutants and heavy metals. Journal of Environmental Chemical Engineering, 2017, 5, 4884-4894.	6.7	47
36	Structural and optical characterization of Gd_2SiO_5 crystalline fibres obtained by laser floating zone. Optical Materials Express, 2017, 7, 868.	3.0	14

#	Article	IF	CITATIONS
37	Surface modifications on as-grown boron doped CVD diamond films induced by the B2O3–ethanol–Ar system. Diamond and Related Materials, 2016, 64, 89-96.	3.9	14
38	Simultaneous CVD synthesis of graphene-diamond hybrid films. Carbon, 2016, 98, 99-105.	10.3	19
39	Defect luminescence in oxides nanocrystals grown by laser assisted techniques. , 2015, , .		2
40	All-Diamond Microelectrodes as Solid State Probes for Localized Electrochemical Sensing. Analytical Chemistry, 2015, 87, 6487-6492.	6.5	9
41	Very Large Superconducting Currents Induced by Growth Tailoring. Crystal Growth and Design, 2015, 15, 2094-2101.	3.0	52
42	Pressure effects on the dissipative behavior of nanocrystalline diamond microelectromechanical resonators. Journal of Micromechanics and Microengineering, 2015, 25, 025019.	2.6	4
43	Vertically aligned N-doped CNTs growth using Taguchi experimental design. Applied Surface Science, 2015, 344, 57-64.	6.1	12
44	Diels–Alder functionalized carbon nanotubes for bone tissue engineering: in vitro/in vivo biocompatibility and biodegradability. Nanoscale, 2015, 7, 9238-9251.	5.6	26
45	High rate growth of nanocrystalline diamond films using high microwave power and pure nitrogen/methane/hydrogen plasma. Vacuum, 2015, 122, 342-346.	3.5	14
46	Heat Dissipation Interfaces Based on Vertically Aligned Diamond/Graphite Nanoplatelets. ACS Applied Materials & Interfaces, 2015, 7, 24772-24777.	8.0	14
47	Processing strategies for smart electroconductive carbon nanotube-based bioceramic bone grafts. Nanotechnology, 2014, 25, 145602.	2.6	6
48	ZnO micro/nanocrystals grown by laser assisted flow deposition. , 2014, , .		1
49	Role of high microwave power on growth and microstructure of thick nanocrystalline diamond films: A comparison with large grain polycrystalline diamond films. Journal of Crystal Growth, 2014, 389, 83-91.	1.5	11
50	Directional solidification of ZrO2–BaZrO3 composites with mixed protonic–oxide ionic conductivity. Solid State Ionics, 2014, 262, 654-658.	2.7	4
51	New fluorinated diamond microelectrodes for localized detection of dissolved oxygen. Sensors and Actuators B: Chemical, 2014, 204, 544-551.	7.8	20
52	Directionally solidified eutectic and off-eutectic mullite–zirconia fibres. Journal of the European Ceramic Society, 2013, 33, 953-963.	5.7	17
53	Mechanical performance upgrading of CVD diamond using the multilayer strategy. Surface and Coatings Technology, 2013, 236, 380-387.	4.8	33
54	Potentiometric chemical sensors from lignin–poly(propylene oxide) copolymers doped by carbon nanotubes. Analyst, The, 2013, 138, 501-508.	3.5	25

#	Article	IF	CITATIONS
55	Prospects on laser processed wide band gap oxides optical materials. Proceedings of SPIE, 2013, , .	0.8	2
56	Towards the understanding of the intentionally induced yellow luminescence in GaN nanowires. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 667-672.	0.8	8
57	Laser Melting Processing of ZrO ₂ –BaZrO ₃ Ceramic Eutectics. Science of Advanced Materials, 2013, 5, 1847-1856.	0.7	3
58	ZnO Nano/Microstructures Grown by Laser Assisted Flow Deposition. Journal of Nano Research, 2012, 18-19, 129-137.	0.8	11
59	Quantification of Microstructural Features in Carbon Nanotube/Nanodiamond Hybrids. Microscopy and Microanalysis, 2012, 18, 85-86.	0.4	0
60	ZnGa2O4:Mn2+ Phosphors Grown by Laser Floating Zone. Microscopy and Microanalysis, 2012, 18, 105-106.	0.4	0
61	Laser Assisted Flow Deposition: a New Method to Grow ZnO. Microscopy and Microanalysis, 2012, 18, 87-88.	0.4	2
62	Electrical Polarization Effect on Bi2Ca2Co1.7Ox thermoelectrics grown by laser floating zone. Microscopy and Microanalysis, 2012, 18, 93-94.	0.4	5
63	Microstructure of Mullite-zirconia Fibres Grown by Directional Solidification. Microscopy and Microanalysis, 2012, 18, 103-104.	0.4	0
64	ZnO nanostructures grown on vertically aligned carbon nanotubes by laser-assisted flow deposition. Acta Materialia, 2012, 60, 5143-5150.	7.9	24
65	Optical properties of LFZ grown β-Ga2O3:Eu3+ fibres. Applied Surface Science, 2012, 258, 9157-9161.	6.1	28
66	Effect of urea on cellulose degradation under conditions of alkaline pulping. Cellulose, 2012, 19, 2195-2204.	4.9	14
67	Simultaneous formation of nanocrystalline and <100> textured and {111} facet dominated microcrystalline diamond films using CH4/H2/O2 plasma. Diamond and Related Materials, 2012, 24, 93-98.	3.9	2
68	Upscaling potential of the CVD stacking growth method to produce dimensionally-controlled and catalyst-free multi-walled carbon nanotubes. Carbon, 2012, 50, 3585-3606.	10.3	15
69	Discriminating the brightness stability of cellulosic pulp in relation to the final bleaching stage. Carbohydrate Polymers, 2012, 88, 726-733.	10.2	4
70	Red light from ZrO2:Eu3+ nanostructures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 712-716.	3.5	36
71	Diamond/WC bilayer formation mechanism by hot-filament CVD. Surface and Coatings Technology, 2012, 206, 3055-3063.	4.8	7
72	Composition profiles and adhesion evaluation of conductive diamond coatings on dielectric ceramics. Thin Solid Films, 2012, 520, 5260-5266.	1.8	11

AntÃ³nio J S Fernandes

#	Article	IF	CITATIONS
73	A DLC/diamond bilayer approach for reducing the initial friction towards a high bearing capacity. Wear, 2012, 290-291, 18-24.	3.1	8
74	YSZ:Dy3+ single crystal white emitter. Journal of Materials Chemistry, 2011, 21, 15262.	6.7	45
75	A new regime for high rate growth of nanocrystalline diamond films using high power and CH4/H2/N2/O2 plasma. Diamond and Related Materials, 2011, 20, 304-309.	3.9	17
76	Deposition of alpha-WC/a-C nanocomposite thin films by hot-filament CVD. Surface and Coatings Technology, 2011, 206, 103-106.	4.8	11
77	Red and infrared luminescence from tetragonal YSZ:Pr3+ single crystal fibres grown by LFZ. Optical Materials, 2011, 34, 27-29.	3.6	11
78	Bright room-temperature green luminescence from YSZ:Tb3+. Materials Letters, 2011, 65, 1979-1981.	2.6	24
79	Nanocrystalline CVD diamond coatings for drilling of WC-Co parts. International Journal of Refractory Metals and Hard Materials, 2011, 29, 618-622.	3.8	21
80	Colossal dielectric constant of poly- and single-crystalline CaCu3Ti4O12 fibres grown by the laser floating zone technique. Acta Materialia, 2011, 59, 102-111.	7.9	27
81	UVâ€resonance Raman microâ€spectroscopy to assess residual chromophores in cellulosic pulps. Journal of Raman Spectroscopy, 2011, 42, 1039-1045.	2.5	7
82	Self-assembled cones of aligned carbon nanofibers grown on wet-etched Cu foils. Carbon, 2011, 49, 2181-2196.	10.3	13
83	Effect of processing method on physical properties of Nb2O5. Journal of the European Ceramic Society, 2011, 31, 501-506.	5.7	61
84	HFCVD diamond deposition parameters optimized by a Taguchi Matrix. Vacuum, 2011, 85, 701-704.	3.5	33
85	Diamond film adhesion onto sub-micrometric WC–Co substrates. Vacuum, 2011, 85, 1135-1139.	3.5	13
86	Effect of microwave power and nitrogen addition on the formation of {100} faceted diamond from microcrystalline to nanocrystalline. Vacuum, 2011, 85, 1130-1134.	3.5	21
87	Structural and optical properties of europium doped zirconia single crystals fibers grown by laser floating zone. Journal of Applied Physics, 2011, 109, .	2.5	38
88	Role of Nitrogen Additive and Temperature on Growth of Diamond Films from Nanocrystalline to Polycrystalline. Journal of Nanoscience and Nanotechnology, 2010, 10, 2722-2730.	0.9	10
89	Nanodiamond-based tribosystems. Surface and Coatings Technology, 2010, 204, 1962-1969.	4.8	14
90	Single and polycrystalline mullite fibres grown by laser floating zone technique. Journal of the European Ceramic Society, 2010, 30, 3311-3318.	5.7	20

#	Article	IF	CITATIONS
91	Wet-etched Ni foils as active catalysts towards carbon nanofiber growth. Carbon, 2010, 48, 2839-2854.	10.3	16
92	The assessment of chromophores in bleached cellulosic pulps employing UV-Raman spectroscopy. Carbohydrate Research, 2010, 345, 1442-1451.	2.3	17
93	The role of surface activation prior to seeding on CVD diamond adhesion. Surface and Coatings Technology, 2010, 204, 3585-3591.	4.8	15
94	Formation of {100} facetâ€ŧerminated nanocrystalline diamond by microwave plasma chemical vapor deposition: Edge effect. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 2029-2034.	1.8	4
95	Novel morphology of chemical vapor deposited diamond films. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, NA-NA.	0.8	Ο
96	Fast coating of ultramicroelectrodes with boron-doped nanocrystalline diamond. Diamond and Related Materials, 2010, 19, 1330-1335.	3.9	8
97	From Micro to Nanometric Grain Size CVD Diamond Tools. Materials Research Society Symposia Proceedings, 2009, 1243, 1.	0.1	1
98	Surface activation pre-treatments for NCD films grown by HFCVD. Vacuum, 2009, 83, 1228-1232.	3.5	13
99	Semi-orthogonal turning of hardmetal with CVD diamond and PCD inserts at different cutting angles. Vacuum, 2009, 83, 1218-1223.	3.5	15
100	Synthesis and structural characterization of highly ã€^100〉-oriented {100}-faceted nanocrystalline diamond films by microwave plasma chemical vapor deposition. Journal of Crystal Growth, 2009, 311, 2258-2264.	1.5	10
101	Nano carbon hybrids from the simultaneous synthesis of CNT/NCD by MPCVD. Diamond and Related Materials, 2009, 18, 160-163.	3.9	13
102	CVD micro/nanocrystalline diamond (MCD/NCD) bilayer coated odontological drill bits. Diamond and Related Materials, 2009, 18, 264-270.	3.9	41
103	Adhesion and Wear Behaviour of NCD Coatings on Si ₃ N ₄ by Micro-Abrasion Tests. Journal of Nanoscience and Nanotechnology, 2009, 9, 3938-3943.	0.9	12
104	Strain analysis of photocatalytic TiO2 thin films on polymer substrates. Thin Solid Films, 2008, 516, 1434-1438.	1.8	24
105	A new chemical path for fabrication of nanocrystalline diamond films. Journal of Crystal Growth, 2008, 310, 261-265.	1.5	21
106	Dry machining of silicon–aluminium alloys with CVD diamond brazed and directly coated Si3N4 ceramic tools. Vacuum, 2008, 82, 1407-1410.	3.5	26
107	PVD-Grown photocatalytic TiO2 thin films on PVDF substrates for sensors and actuators applications. Thin Solid Films, 2008, 517, 1161-1166.	1.8	48
108	CVD diamond water lubricated tribosystems for high load planar sliding. Wear, 2008, 265, 1023-1028.	3.1	24

#	Article	IF	CITATIONS
109	Enhanced sealing performance with CVD nanocrystalline diamond films in self-mated mechanical seals. Diamond and Related Materials, 2008, 17, 1132-1136.	3.9	32
110	Extrinsic stress induced defects in CVD diamond. Diamond and Related Materials, 2008, 17, 190-193.	3.9	12
111	Effect of nitrogen and oxygen addition on morphology and texture of diamond films (from) Tj ETQq1 1 0.78431	4 rgBT /Ov	erlock 10 TFS
112	Nano- and micro-crystalline diamond growth by MPCVD in extremely poor hydrogen uniform plasmas. Diamond and Related Materials, 2007, 16, 757-761.	3.9	29
113	The effect of oxygen and nitrogen additives on the growth of nanocrystalline diamond films. Journal of Physics Condensed Matter, 2007, 19, 386236.	1.8	5
114	Single-Pass and Multi-Pass Laser Cutting of Si–SiC: Assessment of the Cut Quality and Microstructure in the Heat Affected Zone. Journal of Laser Applications, 2007, 19, 170-176.	1.7	9
115	Nano to micrometric HFCVD diamond adhesion strength to Si3N4. Vacuum, 2007, 81, 1443-1447.	3.5	52
116	A comparison study of hydrogen incorporation among nanocrystalline, microcrystalline and polycrystalline diamond films grown by chemical vapor deposition. Thin Solid Films, 2007, 515, 3539-3546.	1.8	40
117	Reactive sputtering deposition of photocatalytic TiO2 thin films on glass substrates. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 138, 139-143.	3.5	73
118	Friction and wear performance of HFCVD nanocrystalline diamond coated silicon nitride ceramics. Diamond and Related Materials, 2006, 15, 739-744.	3.9	68
119	Enhanced performance of HFCVD nanocrystalline diamond self-mated tribosystems by plasma pretreatments on silicon nitride substrates. Diamond and Related Materials, 2006, 15, 2024-2028.	3.9	31
120	Growth rate improvements in the hot-filament CVD deposition of nanocrystalline diamond. Diamond and Related Materials, 2006, 15, 1822-1827.	3.9	54
121	Spatial characterization of fiber Bragg grating structures using transversal pressure. Optics Communications, 2006, 259, 110-114.	2.1	8
122	NCD by HFCVD on a Si3N4-bioglass composite for biomechanical applications. Surface and Coatings Technology, 2006, 200, 6409-6413.	4.8	7
123	Re-sharpenable thick CVD diamond-coated Si3N4 tools for hardmetal turning. Surface and Coatings Technology, 2006, 201, 1776-1782.	4.8	14
124	CVD diamond coated silicon nitride self-mated systems: tribological behaviour under high loads. Tribology Letters, 2006, 21, 141-151.	2.6	43
125	Residual stress minimum in nanocrystalline diamond films. Applied Physics Letters, 2006, 89, 093109.	3.3	22
126	Grain size effect on self-mated CVD diamond dry tribosystems. Wear, 2005, 259, 771-778.	3.1	31

#	Article	IF	CITATIONS
127	Unstressed PACVD diamond films on steel pre-coated with a composite multilayer. Surface and Coatings Technology, 2005, 191, 102-107.	4.8	16
128	Machining hardmetal with CVD diamond direct coated ceramic tools: effect of tool edge geometry. Diamond and Related Materials, 2005, 14, 651-656.	3.9	38
129	High performance sealing with CVD diamond self-mated rings. Diamond and Related Materials, 2005, 14, 617-621.	3.9	27
130	Deposition of nanocrystalline diamond films on silicon nitride ceramic substrates using pulsed microwave discharges in Ar/H2/CH4 gas mixture. Diamond and Related Materials, 2005, 14, 432-436.	3.9	13
131	Hot-filament chemical vapour deposition of nanodiamond on silicon nitride substrates. Diamond and Related Materials, 2004, 13, 643-647.	3.9	32
132	Cutting forces evolution with tool wear in sintered hardmetal turning with CVD diamond. Diamond and Related Materials, 2004, 13, 843-847.	3.9	29
133	A new interlayer approach for CVD diamond coating of steel substrates. Diamond and Related Materials, 2004, 13, 828-833.	3.9	42
134	Study the effect of O2 addition on hydrogen incorporation in CVD diamond. Diamond and Related Materials, 2004, 13, 203-208.	3.9	22
135	Si ₃ N ₄ recubierto con diamante CVD mediante filamento caliente y plasma generado por microondas. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2004, 43, 473-476.	1.9	1
136	Tribological behaviour of CVD diamond films on steel substrates. Wear, 2003, 255, 846-853.	3.1	34
137	Surface Pretreatments of Silicon Nitride for CVD Diamond Deposition. Journal of the American Ceramic Society, 2003, 86, 749-754.	3.8	20
138	Adhesion behaviour assessment on diamond coated silicon nitride by acoustic emission. Diamond and Related Materials, 2003, 12, 733-737.	3.9	50
139	Influence of nucleation density on film quality, growth rate and morphology of thick CVD diamond films. Diamond and Related Materials, 2003, 12, 1488-1494.	3.9	38
140	A new elegant technique for polishing CVD diamond films. Diamond and Related Materials, 2003, 12, 1411-1416.	3.9	43
141	Growth of high quality large grained diamond films on mirror-polished silicon without surface pretreatment. Diamond and Related Materials, 2003, 12, 251-256.	3.9	18
142	Wear resistant CVD diamond tools for turning of sintered hardmetals. Diamond and Related Materials, 2003, 12, 738-743.	3.9	39
143	Tailored Si3N4Ceramic Substrates for CVD Diamond Coating. Surface Engineering, 2003, 19, 410-416.	2.2	20
144	Microwave plasma chemical vapour deposition diamond nucleation on ferrous substrates with Ti and Cr interlayers. Diamond and Related Materials, 2002, 11, 1617-1622.	3.9	58

#	Article	IF	CITATIONS
145	Influence of nucleation on hydrogen incorporation in CVD diamond films. Diamond and Related Materials, 2002, 11, 527-531.	3.9	19
146	Thermal conductivity enhancement in cutting tools by chemical vapor deposition diamond coating. Diamond and Related Materials, 2002, 11, 703-707.	3.9	25
147	Effect of intergranular phase of Si3N4 substrates on MPCVD diamond deposition. Surface and Coatings Technology, 2002, 151-152, 521-525.	4.8	6
148	Wettability studies of reactive brazing alloys on CVD diamond plates. Diamond and Related Materials, 2001, 10, 775-780.	3.9	25
149	MPCVD diamond tool cutting-edge coverage: dependence on the side wedge angle. Diamond and Related Materials, 2001, 10, 803-808.	3.9	20
150	Influence of SiC particle addition on the nucleation density and adhesion strength of MPCVD diamond coatings on Si 3 N 4 substrates. Diamond and Related Materials, 2000, 9, 483-488.	3.9	20
151	Adhesion of diamond coatings on steel and copper with a titanium interlayer. Diamond and Related Materials, 1999, 8, 1549-1554.	3.9	25