
Graeme Moad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4490631/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Living and controlled reversibleâ€activation polymerization (<scp>RAP</scp>) on the way to reversibleâ€deactivation radical polymerization (<scp>RDRP</scp>). Polymer International, 2023, 72, 861-868.	1.6	3
2	Reconsidering terms for mechanisms of polymer growth: the "step-growth―and "chain-growth― dilemma. Polymer Chemistry, 2022, 13, 2262-2270.	1.9	11
3	Terminology and the naming of conjugates based on polymers or other substrates (IUPAC) Tj ETQq1 1 0.78431	.4 rgBT /Ov	verlock 10 Tf
4	Expanding the Scope of RAFT Multiblock Copolymer Synthesis Using the Nanoreactor Concept: The Critical Importance of Initiator Hydrophobicity. Macromolecules, 2022, 55, 1981-1991.	2.2	14
5	Polymerization-induced self-assembly via RAFT in emulsion: effect of Z-group on the nucleation step. Polymer Chemistry, 2021, 12, 122-133.	1.9	29
6	Initiation of RAFT Polymerization: Electrochemically Initiated RAFT Polymerization in Emulsion (Emulsion eRAFT), and Direct PhotoRAFT Polymerization of Liquid Crystalline Monomers. Australian Journal of Chemistry, 2021, 74, 56.	0.5	13
7	Divergent Synthesis of Graft and Branched Copolymers through Spatially Controlled Photopolymerization in Flow Reactors. Macromolecules, 2021, 54, 3430-3446.	2.2	32
8	Multiblock Copolymer Synthesis via Reversible Addition–Fragmentation Chain Transfer Emulsion Polymerization: Effects of Chain Mobility within Particles on Control over Molecular Weight Distribution. Macromolecules, 2021, 54, 3647-3658.	2.2	15
9	Enhanced properties of well-defined polymer networks prepared by a sequential thiol-Michael - radical thiol-ene (STMRT) strategy. European Polymer Journal, 2021, 151, 110440.	2.6	5
10	"All-PVC―Flexible Poly(vinyl Chloride): Nonmigratory <i>Star</i> -Poly(vinyl Chloride) as Plasticizers for PVC by RAFT Polymerization. Macromolecules, 2021, 54, 5022-5032.	2.2	11
11	The Critical Importance of Adopting Whole-of-Life Strategies for Polymers and Plastics. Sustainability, 2021, 13, 8218.	1.6	10
12	Selektive Bindungsspaltung in RAFT Agenzien durch niederenergetische Elektronenanlagerung. Angewandte Chemie, 2021, 133, 19276-19281.	1.6	0
13	Selective Bond Cleavage in RAFT Agents Promoted by Lowâ€Energy Electron Attachment. Angewandte Chemie - International Edition, 2021, 60, 19128-19132.	7.2	12
14	Synthesis of Multicompositional Onionâ€like Nanoparticles via RAFT Emulsion Polymerization. Angewandte Chemie, 2021, 133, 23469.	1.6	2
15	Synthesis of Multicompositional Onionâ€like Nanoparticles via RAFT Emulsion Polymerization. Angewandte Chemie - International Edition, 2021, 60, 23281-23288.	7.2	16
16	RAFT Emulsion Polymerization for (Multi)block Copolymer Synthesis: Overcoming the Constraints of Monomer Order. Macromolecules, 2021, 54, 736-746.	2.2	36
17	Fundamentals of reversible addition–fragmentation chain transfer (RAFT). Chemistry Teacher International, 2021, 3, 3-17.	0.9	13
18	Selective and Rapid Lightâ€Induced RAFT Single Unit Monomer Insertion in Aqueous Solution. Macromolecular Rapid Communications, 2020, 41, e1900478.	2.0	22

#	Article	IF	CITATIONS
19	A 20th anniversary perspective on the life of RAFT (RAFT coming of age). Polymer International, 2020, 69, 658-661.	1.6	33
20	A Comprehensive Platform for the Design and Synthesis of Polymer Molecular Weight Distributions. Macromolecules, 2020, 53, 8867-8882.	2.2	45
21	Reversible-deactivation radical polymerization (Controlled/living radical polymerization): From discovery to materials design and applications. Progress in Polymer Science, 2020, 111, 101311.	11.8	555
22	Anthraquinone-Mediated Reduction of a Trithiocarbonate Chain-Transfer Agent to Initiate Electrochemical Reversible Addition–Fragmentation Chain Transfer Polymerization. Macromolecules, 2020, 53, 10315-10322.	2.2	16
23	Low-Dispersity Polymers in <i>Ab Initio</i> Emulsion Polymerization: Improved MacroRAFT Agent Performance in Heterogeneous Media. Macromolecules, 2020, 53, 7672-7683.	2.2	29
24	Versatile Approach for Preparing PVC-Based Mikto-Arm Star Additives Based on RAFT Polymerization. Macromolecules, 2020, 53, 4465-4479.	2.2	13
25	High-Throughput Process for the Discovery of Antimicrobial Polymers and Their Upscaled Production via Flow Polymerization. Macromolecules, 2020, 53, 631-639.	2.2	55
26	Definitions and notations relating to tactic polymers (IUPAC Recommendations 2020). Pure and Applied Chemistry, 2020, 92, 1769-1779.	0.9	1
27	A Critical Assessment of the Kinetics and Mechanism of Initiation of Radical Polymerization with Commercially Available Dialkyldiazene Initiators. Progress in Polymer Science, 2019, 88, 130-188.	11.8	70
28	<i>Ab initio</i> RAFT emulsion polymerization mediated by small cationic RAFT agents to form polymers with low molar mass dispersity. Polymer Chemistry, 2019, 10, 5044-5051.	1.9	17
29	Exploitation of the Nanoreactor Concept for Efficient Synthesis of Multiblock Copolymers via MacroRAFT-Mediated Emulsion Polymerization. ACS Macro Letters, 2019, 8, 989-995.	2.3	67
30	Kinetic modelling of the reversible addition–fragmentation chain transfer polymerisation of N-isopropylacrylamide. European Polymer Journal, 2019, 120, 109193.	2.6	3
31	Electrochemical Behavior of Thiocarbonylthio Chain Transfer Agents for RAFT Polymerization. ACS Macro Letters, 2019, 8, 1316-1322.	2.3	29
32	Exploitation of Compartmentalization in RAFT Miniemulsion Polymerization to Increase the Degree of Livingness. Journal of Polymer Science Part A, 2019, 57, 1938-1946.	2.5	31
33	Kinetics and mechanism for thermal and photochemical decomposition of 4,4′-azobis(4-cyanopentanoic) Tj E	ГQq1 1 0.	784314 rgBT
34	Emerging Polymer Technologies. Chemistry International, 2019, 41, 42-44.	0.3	0
35	Nano-Engineered Multiblock Copolymer Nanoparticles via Reversible Addition–Fragmentation Chain Transfer Emulsion Polymerization. Macromolecules, 2019, 52, 2965-2974.	2.2	54
36	Nonmigratory Poly(vinyl chloride)-block-polycaprolactone Plasticizers and Compatibilizers Prepared by Sequential RAFT and Ring-Opening Polymerization (RAFT-TIµ-ROP). Macromolecules, 2019, 52, 1746-1756.	2.2	34

#	Article	IF	CITATIONS
37	Polymerization-Induced Phase Segregation and Self-Assembly of Siloxane Additives to Provide Thermoset Coatings with a Defined Surface Topology and Biocidal and Self-Cleaning Properties. Nanomaterials, 2019, 9, 1610.	1.9	6
38	A Critical Survey of Dithiocarbamate Reversible Additionâ€Fragmentation Chain Transfer (RAFT) Agents in Radical Polymerization. Journal of Polymer Science Part A, 2019, 57, 216-227.	2.5	58
39	Effect of Scandium Triflate on the RAFT Copolymerization of Methyl Acrylate and Vinyl Acetate Controlled by an Acid/Base "Switchable―Chain Transfer Agent. Macromolecules, 2018, 51, 410-418.	2.2	21
40	Discrete and Stereospecific Oligomers Prepared by Sequential and Alternating Single Unit Monomer Insertion. Journal of the American Chemical Society, 2018, 140, 13392-13406.	6.6	110
41	Effect of the Z―and Macroâ€Râ€Group on the Thermal Desulfurization of Polymers Synthesized with Acid/Base "Switchable―Dithiocarbamate RAFT Agents. Macromolecular Rapid Communications, 2018, 39, e1800228.	2.0	22
42	Elements of RAFT Navigation. ACS Symposium Series, 2018, , 77-103.	0.5	21
43	Lightâ€Induced RAFT Single Unit Monomer Insertion in Aqueous Solution—Toward Sequenceâ€Controlled Polymers. Macromolecular Rapid Communications, 2018, 39, e1800240.	2.0	43
44	Reversible addition-fragmentation chain transfer (co)polymerization of conjugated diene monomers: butadiene, isoprene and chloroprene. Polymer International, 2017, 66, 26-41.	1.6	57
45	Synthesis of Discrete Oligomers by Sequential PETâ€RAFT Singleâ€Unit Monomer Insertion. Angewandte Chemie - International Edition, 2017, 56, 8376-8383.	7.2	165
46	Synthesis of Discrete Oligomers by Sequential PETâ€RAFT Singleâ€Unit Monomer Insertion. Angewandte Chemie, 2017, 129, 8496-8503.	1.6	36
47	4-Halogeno-3,5-dimethyl-1 <i>H</i> -pyrazole-1-carbodithioates: versatile reversible addition fragmentation chain transfer agents with broad applicability. Polymer International, 2017, 66, 1438-1447.	1.6	28
48	Frontispiece: Synthesis of Discrete Oligomers by Sequential PETâ€RAFT Singleâ€Unit Monomer Insertion. Angewandte Chemie - International Edition, 2017, 56, .	7.2	1
49	Frontispiz: Synthesis of Discrete Oligomers by Sequential PETâ€RAFT Singleâ€Unit Monomer Insertion. Angewandte Chemie, 2017, 129, .	1.6	0
50	Cover Image, Volume 66, Issue 11. Polymer International, 2017, 66, i-i.	1.6	0
51	RAFT-mediated, visible light-initiated single unit monomer insertion and its application in the synthesis of sequence-defined polymers. Polymer Chemistry, 2017, 8, 4637-4643.	1.9	69
52	RAFT polymerization to form stimuli-responsive polymers. Polymer Chemistry, 2017, 8, 177-219.	1.9	278
53	In Focus Emerging Polymer Technologies Summit (EPTS'16). Polymer International, 2017, 66, 1423-1423.	1.6	0
54	Combination anti-HIV therapy via tandem release of prodrugs from macromolecular carriers. Polymer Chemistry, 2016, 7, 7477-7487.	1.9	20

#	Article	IF	CITATIONS
55	Triple Activity of Lamivudine Releasing Sulfonated Polymers against HIV-1. Molecular Pharmaceutics, 2016, 13, 2397-2410.	2.3	20
56	Dithiocarbamate RAFT agents with broad applicability – the 3,5-dimethyl-1H-pyrazole-1-carbodithioates. Polymer Chemistry, 2016, 7, 481-492.	1.9	48
57	Viscoelastic properties of vis-breaking polypropylenes. AIP Conference Proceedings, 2015, , .	0.3	0
58	Advances in Switchable RAFT Polymerization. Macromolecular Symposia, 2015, 350, 34-42.	0.4	44
59	Preparation of 1 : 1 alternating, nucleobase-containing copolymers for use in sequence-controlled polymerization. Polymer Chemistry, 2015, 6, 228-232.	1.9	24
60	Enhancement of MHC-I Antigen Presentation via Architectural Control of pH-Responsive, Endosomolytic Polymer Nanoparticles. AAPS Journal, 2015, 17, 358-369.	2.2	52
61	Aqueous hydrogen peroxide-induced degradation of polyolefins: AÂgreener process for controlled-rheology polypropylene. Polymer Degradation and Stability, 2015, 117, 97-108.	2.7	22
62	RAFT Polymerization $\hat{a} \in $ Then and Now. ACS Symposium Series, 2015, , 211-246.	0.5	43
63	Triphenylphosphine-grafted, RAFT-synthesised, porous monoliths as catalysts for Michael addition in flow synthesis. Reactive and Functional Polymers, 2015, 96, 89-96.	2.0	19
64	The effect of Z-group modification on the RAFT polymerization of N-vinylpyrrolidone controlled by "switchable―N-pyridyl-functional dithiocarbamates. Polymer Chemistry, 2015, 6, 7119-7126.	1.9	32
65	RAFT (Reversible addition-fragmentation chain transfer) crosslinking (co)polymerization of multi-olefinic monomers to form polymer networks. Polymer International, 2015, 64, 15-24.	1.6	93
66	Chapter 1. The History of Nitroxide-mediated Polymerization. RSC Polymer Chemistry Series, 2015, , 1-44.	0.1	14
67	Modeling the Kinetics of Monolith Formation by RAFT Copolymerization of Styrene and Divinylbenzene. Macromolecular Reaction Engineering, 2014, 8, 706-722.	0.9	25
68	Mechanism and Kinetics of Dithiobenzoateâ€Mediated RAFT Polymerization – Status of the Dilemma. Macromolecular Chemistry and Physics, 2014, 215, 9-26.	1.1	126
69	Rapid and Systematic Access to Quasiâ€Ðiblock Copolymer Libraries Covering a Comprehensive Composition Range by Sequential RAFT Polymerization in an Automated Synthesizer. Macromolecular Rapid Communications, 2014, 35, 492-497.	2.0	45
70	Porous, functional, poly(styrene-co-divinylbenzene) monoliths by RAFT polymerization. Polymer Chemistry, 2014, 5, 722-732.	1.9	50
71	RAFT for the Control of Monomer Sequence Distribution – Single Unit Monomer Insertion (SUMI) into Dithiobenzoate RAFT Agents. ACS Symposium Series, 2014, , 133-147.	0.5	17
72	An Armâ€First Approach to Cleavable Miktoâ€Arm Star Polymers by RAFT Polymerization. Macromolecular Rapid Communications, 2014, 35, 840-845.	2.0	47

#	Article	IF	CITATIONS
73	One pot synthesis of higher order quasi-block copolymer libraries <i>via</i> sequential RAFT polymerization in an automated synthesizer. Polymer Chemistry, 2014, 5, 5236-5246.	1.9	72
74	Synthesis of cleavable multi-functional mikto-arm star polymer by RAFT polymerization: example of an anti-cancer drug 7-ethyl-10-hydroxycamptothecin (SN-38) as functional moiety. Science China Chemistry, 2014, 57, 995-1001.	4.2	17
75	A brief guide to polymer nomenclature from IUPAC. Colloid and Polymer Science, 2013, 291, 457-458.	1.0	2
76	A Brief Guide to Polymer Nomenclature. Polymer, 2013, 54, 3-4.	1.8	6
77	A Brief Guide to Polymer Nomenclature. Polymer Testing, 2013, 32, iv-v.	2.3	1
78	A brief guide to polymer nomenclature. Reactive and Functional Polymers, 2013, 73, iv-v.	2.0	1
79	A Brief Guide to Polymer Nomenclature. Progress in Polymer Science, 2013, 38, iii-iv.	11.8	1
80	RAFT Polymerization and Some of its Applications. Chemistry - an Asian Journal, 2013, 8, 1634-1644.	1.7	276
81	The reactivity of N-vinylcarbazole in RAFT polymerization: trithiocarbonates deliver optimal control for the synthesis of homopolymers and block copolymers. Polymer Chemistry, 2013, 4, 3591.	1.9	41
82	Fundamentals of RAFT Polymerization. RSC Polymer Chemistry Series, 2013, , 205-249.	0.1	21
83	Glossary of terms relating to thermal and thermomechanical properties of polymers (IUPAC) Tj ETQq1 1 0.78431	l4 rgBT /O	verJock 10 Tf
84	Controlled Synthesis of Multifunctional Polymers by RAFT for Personal Care Applications. ACS Symposium Series, 2013, , 157-172.	0.5	4
85	A brief guide to polymer nomenclature (IUPAC Technical Report). Pure and Applied Chemistry, 2012, 84, 2167-2169.	0.9	48
86	Living Radical Polymerization by the RAFT Process – A Third Update. Australian Journal of Chemistry, 2012, 65, 985.	0.5	920
87	Terminology for aggregation and self-assembly in polymer science (IUPAC Recommendations 2013). Pure and Applied Chemistry, 2012, 85, 463-492.	0.9	21
88	Chain Transfer Kinetics of Acid/Base Switchable <i>N</i> -Aryl- <i>N</i> -Pyridyl Dithiocarbamate RAFT Agents in Methyl Acrylate, <i>N</i> -Vinylcarbazole and Vinyl Acetate Polymerization. Macromolecules, 2012, 45, 4205-4215.	2.2	81
89	RAFT Agent Design and Synthesis. Macromolecules, 2012, 45, 5321-5342.	2.2	505
90	The scope for synthesis of macro-RAFT agents by sequential insertion of single monomer units. Polymer Chemistry, 2012, 3, 1879.	1.9	122

#	Article	IF	CITATIONS
91	Some Recent Developments in RAFT Polymerization. ACS Symposium Series, 2012, , 243-258.	0.5	9
92	Block copolymers containing organic semiconductor segments by RAFT polymerization. Organic and Biomolecular Chemistry, 2011, 9, 6111.	1.5	44
93	Functional polymers for optoelectronic applications by RAFT polymerization. Polymer Chemistry, 2011, 2, 492-519.	1.9	153
94	Controlled RAFT Polymerization in a Continuous Flow Microreactor. Organic Process Research and Development, 2011, 15, 593-601.	1.3	123
95	Switchable Reversible Addition–Fragmentation Chain Transfer (RAFT) Polymerization in Aqueous Solution, <i>N</i> , <i>N</i> -Dimethylacrylamide. Macromolecules, 2011, 44, 6738-6745.	2.2	105
96	Block Copolymer Synthesis through the Use of Switchable RAFT Agents. ACS Symposium Series, 2011, , 81-102.	0.5	24
97	Endâ€functional polymers, thiocarbonylthio group removal/transformation and reversible addition–fragmentation–chain transfer (RAFT) polymerization. Polymer International, 2011, 60, 9-25.	1.6	275
98	Chemical modification of starch by reactive extrusion. Progress in Polymer Science, 2011, 36, 218-237.	11.8	215
99	A Potential New RAFT - Click Reaction or a Cautionary Note on the Use of Diazomethane to Methylate RAFT-synthesized Polymers. Australian Journal of Chemistry, 2011, 64, 433.	0.5	18
100	Substituent Effects on RAFT Polymerization with Benzyl Aryl Trithiocarbonates. Macromolecular Chemistry and Physics, 2010, 211, 529-538.	1.1	26
101	Terminology for reversible-deactivation radical polymerization previously called "controlled" radical or "living" radical polymerization (IUPAC Recommendations 2010). Pure and Applied Chemistry, 2009, 82, 483-491.	0.9	480
102	RAFT Polymerization: Materials of The Future, Science of Today: Radical Polymerization - The Next Stage. Australian Journal of Chemistry, 2009, 62, 1379.	0.5	34
103	Thiocarbonylthio end group removal from RAFTâ€synthesized polymers by a radicalâ€induced process. Journal of Polymer Science Part A, 2009, 47, 6704-6714.	2.5	103
104	Living Radical Polymerization by the RAFT Process - A Second Update. Australian Journal of Chemistry, 2009, 62, 1402.	0.5	874
105	New Features of the Mechanism of RAFT Polymerization. ACS Symposium Series, 2009, , 3-18.	0.5	39
106	Universal (Switchable) RAFT Agents. Journal of the American Chemical Society, 2009, 131, 6914-6915.	6.6	271
107	Polystyrene-block-poly(vinyl acetate) through the Use of a Switchable RAFT Agent. Macromolecules, 2009, 42, 9384-9386.	2.2	109
108	Radical addition–fragmentation chemistry in polymer synthesis. Polymer, 2008, 49, 1079-1131.	1.8	1,296

#	Article	IF	CITATIONS
109	Toward Living Radical Polymerization. Accounts of Chemical Research, 2008, 41, 1133-1142.	7.6	675

110 Glossary of terms related to kinetics, thermodynamics, and mechanisms of polymerization (IUPAC) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50

111	Thiocarbonylthio End Group Removal from RAFT-Synthesized Polymers by Radical-Induced Reduction. Macromolecules, 2007, 40, 4446-4455.	2.2	221
112	RAFT Polymerization: Adding to the Picture. Macromolecular Symposia, 2007, 248, 104-116.	0.4	79
113	Reversible Addition Fragmentation Chain Transfer Polymerization of Methyl Methacrylate in the Presence of Lewis Acids:  An Approach to Stereocontrolled Living Radical Polymerization. Macromolecules, 2007, 40, 9262-9271.	2.2	51
114	Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007). Pure and Applied Chemistry, 2007, 79, 1801-1829.	0.9	643
115	A small-angle X-ray scattering study of the effect of chain architecture on the shear-induced crystallization of branched and linear poly(ethylene terephthalate). Journal of Applied Crystallography, 2007, 40, s599-s604.	1.9	7
116	Synthesis of Well-Defined Polystyrene with Primary Amine End Groups through the Use of Phthalimido-Functional RAFT Agents. Macromolecules, 2006, 39, 5293-5306.	2.2	153
117	RAFT Polymerization with Phthalimidomethyl Trithiocarbonates or Xanthates. On the Origin of Bimodal Molecular Weight Distributions in Living Radical Polymerization. Macromolecules, 2006, 39, 5307-5318.	2.2	197
118	Living Radical Polymerization by the RAFT Process—A First Update. Australian Journal of Chemistry, 2006, 59, 669.	0.5	826
119	Mechanism and kinetics of dithiobenzoate-mediated RAFT polymerization. I. The current situation. Journal of Polymer Science Part A, 2006, 44, 5809-5831.	2.5	429
119 120		2.5 1.6	429 7
	Journal of Polymer Science Part A, 2006, 44, 5809-5831. Crystallisation kinetics of novel branched poly(ethylene terephthalate): a small-angle X-ray scattering		
120	Journal of Polymer Science Part A, 2006, 44, 5809-5831. Crystallisation kinetics of novel branched poly(ethylene terephthalate): a small-angle X-ray scattering study. Polymer International, 2006, 55, 1435-1443. Approaches to phthalimido and amino end-functional polystyrene by atom transfer radical	1.6	7
120 121	Journal of Polymer Science Part A, 2006, 44, 5809-5831. Crystallisation kinetics of novel branched poly(ethylene terephthalate): a small-angle X-ray scattering study. Polymer International, 2006, 55, 1435-1443. Approaches to phthalimido and amino end-functional polystyrene by atom transfer radical polymerisation (ATRP). Reactive and Functional Polymers, 2006, 66, 137-147. RAFT Copolymerization and Its Application to the Synthesis of Novel Dispersants—Intercalants—Exfoliants for Polymer—Clay Nanocomposites. ACS Symposium Series, 2006,	1.6 2.0	7 34
120 121 122	Journal of Polymer Science Part A, 2006, 44, 5809-5831. Crystallisation kinetics of novel branched poly(ethylene terephthalate): a small-angle X-ray scattering study. Polymer International, 2006, 55, 1435-1443. Approaches to phthalimido and amino end-functional polystyrene by atom transfer radical polymerisation (ATRP). Reactive and Functional Polymers, 2006, 66, 137-147. RAFT Copolymerization and Its Application to the Synthesis of Novel Dispersants—Intercalants—Exfoliants for Polymer—Clay Nanocomposites. ACS Symposium Series, 2006, , 514-532.	1.6 2.0 0.5	7 34 24
120 121 122 123	Journal of Polymer Science Part A, 2006, 44, 5809-5831. Crystallisation kinetics of novel branched poly(ethylene terephthalate): a small-angle X-ray scattering study. Polymer International, 2006, 55, 1435-1443. Approaches to phthalimido and amino end-functional polystyrene by atom transfer radical polymerisation (ATRP). Reactive and Functional Polymers, 2006, 66, 137-147. RAFT Copolymerization and Its Application to the Synthesis of Novel Dispersants—Intercalants—Exfoliants for Polymer—Clay Nanocomposites. ACS Symposium Series, 2006, , 514-532. The Emergence of RAFT Polymerization. Australian Journal of Chemistry, 2006, 59, 661. A simple method for determining protic end-groups of synthetic polymers by 1H NMR spectroscopy.	1.6 2.0 0.5 0.5	7 34 24 62

0.5

58

#	Article	IF	CITATIONS
127	Thermolysis of RAFT-Synthesized Poly(Methyl Methacrylate). Australian Journal of Chemistry, 2006, 59, 755.	0.5	117
128	Novel Copolymers as Dispersants/Intercalants/Exfoliants for Polypropylene-Clay Nanocomposites. Macromolecular Symposia, 2006, 233, 170-179.	0.4	32
129	Advances in RAFT polymerization: the synthesis of polymers with defined end-groups. Polymer, 2005, 46, 8458-8468.	1.8	735
130	A novel method for determination of polyester end-groups by NMR spectroscopy. Polymer, 2005, 46, 5005-5011.	1.8	31
131	Living Radical Polymerization by the RAFT Process. ChemInform, 2005, 36, no.	0.1	0
132	Controlling Polymerization. , 2005, , 413-449.		1
133	Chain Transfer. , 2005, , 279-331.		7
134	Radical Reactions. , 2005, , 11-48.		3
135	Living Radical Polymerization. , 2005, , 451-585.		53
136	Copolymerization. , 2005, , 333-412.		2
137	Binary Copolymerization with Catalytic Chain Transfer. A Method for Synthesizing Macromonomers Based on Monosubstituted Monomers. Macromolecules, 2005, 38, 9037-9054.	2.2	32
138	Propagation. , 2005, , 167-232.		1
139	Thermolysis of RAFT-Synthesized Polymers. A Convenient Method for Trithiocarbonate Group Elimination. Macromolecules, 2005, 38, 5371-5374.	2.2	143
140	Living Radical Polymerization by the RAFT Process. Australian Journal of Chemistry, 2005, 58, 379.	0.5	2,116
141	Chain Transfer Activity of ω-Unsaturated Methacrylic Oligomers in Polymerizations of Methacrylic Monomers. Macromolecules, 2004, 37, 4441-4452.	2.2	44
142	Definitions of terms relating to reactions of polymers and to functional polymeric materials (IUPAC) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf !
143	Thiocarbonylthio Compounds [SC(Ph)Sâ^'R] in Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization). Role of the Free-Radical Leaving Group (R). Macromolecules, 2003, 36, 2256-2272.	2.2	758
			_

Kinetics and Mechanism of RAFT Polymerization. ACS Symposium Series, 2003, , 520-535.

9

#	Article	IF	CITATIONS
145	Thiocarbonylthio Compounds (SC(Z)Sâ^R) in Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization). Effect of the Activating Group Z. Macromolecules, 2003, 36, 2273-2283.	2.2	587
146	Chain Length Dependence of Radicalâ^'Radical Termination in Free Radical Polymerization:Â A Pulsed Laser Photolysis Investigation. Macromolecules, 2003, 36, 2032-2040.	2.2	21
147	Living Free Radical Polymerization with Reversible Additionâ^'Fragmentation Chain Transfer (RAFT) Tj ETQq1 1 0.7	'84314 rgB 2.2	3T_/Overlock
148	Synthesis of novel architectures by radical polymerization with reversible addition fragmentation chain transfer (RAFT polymerization). Macromolecular Symposia, 2003, 192, 1-12.	0.4	147
149	Controlled synthesis of block polyesters by reactive extrusion. Macromolecular Symposia, 2003, 202, 37-46.	0.4	8
150	Initiating free radical polymerization. Macromolecular Symposia, 2002, 182, 65-80.	0.4	77
151	Multiarm organic compounds for use as reversible chain-transfer agents in living radical polymerizations. Tetrahedron Letters, 2002, 43, 6811-6814.	0.7	54
152	Mechanism and Kinetics of RAFT-Based Living Radical Polymerizations of Styrene and Methyl Methacrylate. Macromolecules, 2001, 34, 402-408.	2.2	313
153	Tailored polymer architectures by reversible addition-frasmentation chain transfer. Macromolecular Symposia, 2001, 174, 209-212.	0.4	82
154	Characterization of polyolefin melts using the polymer reference interaction site model integral equation theory with a single-site united atom model. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 1803-1814.	2.4	11
155	Living free radical polymerization with reversible addition - fragmentation chain transfer (the life of) Tj ETQq1 1 0.	784314 rg 1.6	:BT_ Overloc
156	Living polymerization: Rationale for uniform terminology. , 2000, 38, 1706-1708.		97
157	Living polymerization: Rationale for uniform terminology. Journal of Polymer Science Part A, 2000, 38, 1709-1709.	2.5	12
158	15N CP/MAS solid-state NMR spectroscopy of a 15N-enriched hindered amine light stabilizer photolyzed in acrylic/melamine and acrylic/urethane coatings. Polymer Degradation and Stability, 2000, 70, 81-88.	2.7	6
159	Preparation of Macromonomers via Chain Transfer with and without Added Chain Transfer Agent. ACS Symposium Series, 2000, , 297-312.	0.5	22
160	Synthesis of Defined Polymers by Reversible Addition—Fragmentation Chain Transfer: The RAFT Process. ACS Symposium Series, 2000, , 278-296.	0.5	175
161	Living Polymers by the Use of Trithiocarbonates as Reversible Additionâ ^{~^} Fragmentation Chain Transfer (RAFT) Agents:Â ABA Triblock Copolymers by Radical Polymerization in Two Steps. Macromolecules, 2000, 33, 243-245.	2.2	446
162	A novel synthesis of functional dithioesters, dithiocarbamates, xanthates and trithiocarbonates.	0.7	441

Graeme Moad

A novel synthesis of functional dithioesters, Tetrahedron Letters, 1999, 40, 2435-2438. dithiocarbamates, xanthates and trithiocarbonates. 162

#	Article	IF	CITATIONS
163	The synthesis of polyolefin graft copolymers by reactive extrusion. Progress in Polymer Science, 1999, 24, 81-142.	11.8	514
164	Living Radical Polymerization with Reversible Additionâ^'Fragmentation Chain Transfer (RAFT):Â Direct ESR Observation of Intermediate Radicals. Macromolecules, 1999, 32, 5457-5459.	2.2	174
165	Tailored polymers by free radical processes. Macromolecular Symposia, 1999, 143, 291-307.	0.4	136
166	Living Radical Polymerization with Reversible Additionâ^'Fragmentation Chain Transfer (RAFT) Tj ETQq0 0 0 rgBT / 6977-6980.	Overlock 1 2.2	10 Tf 50 627 519
167	Imidazolidinone Nitroxide-Mediated Polymerization. Macromolecules, 1999, 32, 6895-6903.	2.2	85
168	Chain Transfer to Polymer:Â A Convenient Route to Macromonomers. Macromolecules, 1999, 32, 7700-7702.	2.2	163
169	Measurements of Primary Radical Concentrations Generated by Pulsed Laser Photolysis Using Fluorescence Detection. Journal of Physical Chemistry A, 1999, 103, 6580-6586.	1.1	44
170	A More Versatile Route to Block Copolymers and Other Polymers of Complex Architecture by Living Radical Polymerization:Â The RAFT Process. Macromolecules, 1999, 32, 2071-2074.	2.2	820
171	Living Free-Radical Polymerization by Reversible Additionâ^ Fragmentation Chain Transfer:Â The RAFT Process. Macromolecules, 1998, 31, 5559-5562.	2.2	4,672
172	Controlled-Growth Free-Radical Polymerization of Methacrylate Esters: Reversible Chain Transfer versus Reversible Termination. ACS Symposium Series, 1998, , 332-360.	0.5	76
173	Developments in the synthesis of maleated polyolefins by reactive extrusion. Macromolecular Symposia, 1998, 129, 109-118.	0.4	18
174	Direct Measurement of Primary Radical Concentrations in Pulsed Laser Photolysis. Macromolecules, 1997, 30, 7627-7630.	2.2	19
175	Characterization of poly(ethylene terephthalate) and poly(ethylene terephthalate) blends. Polymer, 1997, 38, 3035-3043.	1.8	37
176	Use of Chain Length Distributions in Determining Chain Transfer Constants and Termination Mechanisms. Macromolecules, 1996, 29, 7727-7733.	2.2	77
177	Chain Transfer Activity of ω-Unsaturated Methyl Methacrylate Oligomers. Macromolecules, 1996, 29, 7717-7726.	2.2	140
178	Control of polymer structure by chain transfer processes. Macromolecular Symposia, 1996, 111, 1-11.	0.4	26
179	A new form of controlled growth free radical polymerization. Macromolecular Symposia, 1996, 111, 13-23.	0.4	82
180	Morphology-property relationships in ABS/PET blends. I. Compositional effects. , 1996, 62, 1699-1708.		34

#	Article	IF	CITATIONS
181	Morphology-property relationships in ABS/PET blends. II. Influence of processing conditions on structure and properties. , 1996, 62, 1709-1714.		19
182	Evaluation of propagation rate constants for the free radical polymerization of methacrylonitrile by pulsed laser photolysis. Macromolecular Rapid Communications, 1995, 16, 837-844.	2.0	31
183	Alkoxyamine-Initiated Living Radical Polymerization: Factors Affecting Alkoxyamine Homolysis Rates. Macromolecules, 1995, 28, 8722-8728.	2.2	325
184	Narrow Polydispersity Block Copolymers by Free-Radical Polymerization in the Presence of Macromonomers. Macromolecules, 1995, 28, 5381-5385.	2.2	203
185	Compatibilisation of polystyrene-polyolefin blends. Polymer Bulletin, 1994, 32, 479-485.	1.7	45
186	New Free-Radical Ring-Opening Acrylate Monomers. Macromolecules, 1994, 27, 7935-7937.	2.2	84
187	Applications of Labelling and Multidimensional NMR in the Characterization of Synthetic Polymers. Annual Reports on NMR Spectroscopy, 1994, , 287-323.	0.7	3
188	Further studies on the thermal decomposition of AIBN—implications concerning the mechanism of termination in methacrylonitrile polymerization. European Polymer Journal, 1993, 29, 379-388.	2.6	35
189	Effect of ethyl aluminium sesquichloride on the relative reactivities of styrene and methyl methacrylate towards the 1-cyano-1-methylethyl and the 1-methyl-1-(methoxycarbonyl)ethyl radicals. European Polymer Journal, 1993, 29, 389-395.	2.6	10
190	Title is missing!. Die Makromolekulare Chemie, 1993, 194, 1691-1705.	1.1	112
191	Effect of ethyl aluminium sesquichloride on the specificity of the reactions of 1-methyl-1-methoxycarbonylethyl radical. Polymer Bulletin, 1992, 27, 425-428.	1.7	8
192	Consistent values of rate parameters in free radical polymerization systems. II. Outstanding dilemmas and recommendations. Journal of Polymer Science Part A, 1992, 30, 851-863.	2.5	199
193	Absolute rate constants for radical-monomer reactions. Polymer Bulletin, 1992, 29, 647-652.	1.7	74
194	Effects of solvent on model copolymerization reactions. A 13C-NMR study. European Polymer Journal, 1992, 28, 275-282.	2.6	15
195	Computer simulation of the chemical properties of copolymers. Makromolekulare Chemie Macromolecular Symposia, 1991, 51, 127-146.	0.6	13
196	13C=O NMR Signal Assignments for Poly(n-butyl methacrylate-co-methyl methacrylate). Application of 13C-1H Correlation Spectroscopy and 13C Labelling. Polymer Journal, 1991, 23, 1401-1403.	1.3	5
197	The Application of Supercomputers in Modeling Chemical Reaction Kinetics: Kinetic Simulation of 'Quasi-Living' Radical Polymerization. Australian Journal of Chemistry, 1990, 43, 1215.	0.5	97
198	Invited Review. Understanding and Controlling Radical Polymerization. Australian Journal of Chemistry, 1990, 43, 215.	0.5	35

#	Article	IF	CITATIONS
199	The philicity of tert-butoxy radicals. What factors are important in determining the rate and regiospecificity of tert-butoxy radical addition to olefins?. Journal of Organic Chemistry, 1989, 54, 1607-1611.	1.7	67
200	"Weak links―in polystyrene—thermal degradation of polymers prepared with AIBN or benzoyl peroxide as initiator. European Polymer Journal, 1989, 25, 767-777.	2.6	33
201	How powerful are composition data in discriminating between the terminal and penultimate models for binary copolymerization?. Macromolecules, 1989, 22, 1145-1147.	2.2	29
202	Chemistry of Bimolecular Termination. , 1989, , 147-160.		7
203	Other Initiating Systems. , 1989, , 141-146.		15
204	Azo and Peroxy Initiators. , 1989, , 97-121.		21
205	Thermal stability of poly(methyl methacrylate). Polymer Bulletin, 1988, 20, 499-503.	1.7	35
206	Consistent values of rate parameters in free radical polymerization systems. Journal of Polymer Science, Polymer Letters Edition, 1988, 26, 293-297.	0.4	132
207	Kinetics of the coupling reactions of the nitroxyl radical 1,1,3,3-tetramethylisoindoline-2-oxyl with carbon-centered radicals. Journal of Organic Chemistry, 1988, 53, 1632-1641.	1.7	165
208	End groups of poly(methyl methacrylate-co-styrene) prepared with tert-butoxy, methyl, and/or phenyl radical initiation: effects of solvent, monomer composition, and conversion. Macromolecules, 1988, 21, 1522-1528.	2.2	38
209	Thermal stability of benzoyl peroxide-initiated polystyrene. Macromolecules, 1988, 21, 855-857.	2.2	19
210	Initiation. The reactions of primary radicals. Makromolekulare Chemie Macromolecular Symposia, 1987, 10-11, 109-125.	0.6	27
211	Influences of the initiation and termination reactions on the molecular weight distribution and compositional heterogeneity of functional copolymers: an application of Monte Carlo simulation. Macromolecules, 1987, 20, 675-679.	2.2	35
212	Kinetic data for coupling of primary alkyl radicals with a stable nitroxide. Journal of the Chemical Society Chemical Communications, 1986, , 1003.	2.0	27
213	13C-1H heteronuclear chemical shift correlation spectroscopy applied to poly(methyl) Tj ETQq1 1 0.784314 rgBT sequences. Macromolecules, 1986, 19, 2494-2497.	/Overlock 2.2	10 Tf 50 18 28
214	Critical-Points (Azeotropic Compositions) in Multicomponent Copolymerization. Australian Journal of Chemistry, 1986, 39, 1877.	0.5	5
215	Tacticity of Poly(Methyl Methacrylate). Evidence for a Penpenultimate Group Effect in Free-Radical Polymerization. Australian Journal of Chemistry, 1986, 39, 43.	0.5	58
216	Kinetic Simulation of Polymerization Involving Termination by Reversible Chain Transfer. Australian Journal of Chemistry, 1986, 39, 1943.	0.5	9

#	Article	IF	CITATIONS
217	Critical Points in Binary Copolymerization and the Penultimate Group Effect. Australian Journal of Chemistry, 1985, 38, 1287.	0.5	3
218	Structural defects in polymers - their identification and significance. Pure and Applied Chemistry, 1985, 57, 985-992.	0.9	21
219	Slow nitrogen inversion–N–O rotation in 2-alkoxy-1,1,3,3-tetramethylisoindolines. Journal of the Chemical Society Chemical Communications, 1985, , 1249-1250.	2.0	10
220	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1984, 5, 793-798.	1.1	84
221	Evaluation of end groups in poly(methyl methacrylate-co-styrene) by 13C NMR. Polymer Bulletin, 1984, 12, 471.	1.7	14
222	Fate of the initiator in the azobisisobutyronitrile-initiated polymerization of styrene. Macromolecules, 1984, 17, 1094-1099.	2.2	97
223	Synthesis of the radical scavenger 1,1,3,3-Tetramethylisoindolin-2-yloxyl. Australian Journal of Chemistry, 1983, 36, 397.	0.5	117
224	On the regioselectivity of free radical processes ; reactions of benzoyloxy, phenyl and t-butoxy radicals with some α,β-unsaturated esters. Australian Journal of Chemistry, 1983, 36, 1573.	0.5	45
225	Solvent effects on the reaction of t-butoxy radicals with methyl methacrylate. Australian Journal of Chemistry, 1983, 36, 2447.	0.5	35
226	The Reaction of Benzoyloxy Radicals with Styrene—Implications Concerning the Structure of Polystyrene. Journal of Macromolecular Science Part A, Chemistry, 1982, 17, 51-59.	0.4	40
227	Structure of benzoyl peroxide initiated polystyrene: determination of the initiator-derived functionality by carbon-13 NMR. Macromolecules, 1982, 15, 1188-1191.	2.2	96
228	Selectivity of the reaction of free radicals with styrene. Macromolecules, 1982, 15, 909-914.	2.2	223
229	Reactions of benzoyloxyl radicals with some common vinyl monomers. Die Makromolekulare Chemie Rapid Communications, 1982, 3, 533-536.	1.1	35
230	A product study of the nitroxide inhibited thermal polymerization of styrene. Polymer Bulletin, 1982, 6, 589.	1.7	81
231	Head additon of radicals to methyl methacrylate. Polymer Bulletin, 1982, 6, 647.	1.7	17
232	The reaction of acyl peroxides with 2,2,6,6-tetramethylpiperidinyl-1-oxy. Tetrahedron Letters, 1981, 22, 1165-1168.	0.7	60
233	The kinetics and mechanism of ring opening of radicals containing the cyclobutylcarbinyl system. Journal of the Chemical Society Perkin Transactions II, 1980, , 1083.	0.9	77
234	Ring-opening of some radicals containing the cyclopropylmethyl system. Journal of the Chemical Society Perkin Transactions II, 1980, , 1473.	0.9	41

#	Article	IF	CITATIONS
235	Studies on 6-methyl-5-deazatetrahydropterin and its 4a adducts. Journal of the American Chemical Society, 1979, 101, 6068-6076.	6.6	46
236	The mechanism of oxidation of 6-methyl-5-carba-5-deazatetrahydropterin. Evidence for the involvement cf a 4a-adduct in the oxidation of tetrahydropterins Tetrahedron Letters, 1978, 19, 2271-2274.	0.7	9
237	On the mechanism of decomposition of geminal diamines. Journal of the American Chemical Society, 1978, 100, 5495-5499.	6.6	25
238	Aluminium-chloride-promoted reactions of ethyl acrylate with olefins. Australian Journal of Chemistry, 1977, 30, 2733.	0.5	8
239	Cyclization of 3-allylhex-5-enyl radical: mechanism, and implications concerning the structures of cyclopolymers. Journal of the Chemical Society Perkin Transactions II, 1975, , 1726.	0.9	27
240	Intramolecular addition in hex-5-enyl, hept-6-enyl, and oct-7-enyl radicals. Journal of the Chemical Society Chemical Communications, 1974, , 472.	2.0	86
241	The Mechanism and Kinetics of the RAFT Process: Overview, Rates, Stabilities, Side Reactions, Product Spectrum and Outstanding Challenges. , 0, , 51-104.		42
242	Macro-RAFT Synthesis by Single Unit Monomer Insertion (SUMI) into Dithiobenzoate RAFT Agents Towards Biological Precision. , 0, , .		0