
Ravinder K Kohli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4490517/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Variations in leaf litter decomposition explain invasion success of Broussonetia papyrifera over confamilial non-invasive Morus alba in urban habitats. Urban Forestry and Urban Greening, 2022, 67, 127408.	5.3	6
2	Essential oils as anticancer agents: Potential role in malignancies, drug delivery mechanisms, and immune system enhancement. Biomedicine and Pharmacotherapy, 2022, 146, 112514.	5.6	69
3	Biodegradable chelant-metal complexes enhance cadmium phytoextraction efficiency of Solanum americanum. Environmental Science and Pollution Research, 2022, 29, 57102-57111.	5.3	4
4	Isolation and characterization of a novel hydrocarbonoclastic and biosurfactant producing bacterial strain: Fictibacillus phosphorivorans RP3. 3 Biotech, 2021, 11, 105.	2.2	5
5	Parthenium hysterophorus. , 2021, , 311-333.		1
6	Sensitivity of plants to high frequency electromagnetic radiation: cellular mechanisms and morphological changes. Reviews in Environmental Science and Biotechnology, 2021, 20, 55-74.	8.1	22
7	Changes in Soil Chemistry and Foliar Metabolism of Himalayan Cedar (Cedrus deodara) and Himalayan Spruce (Picea smithiana) along an Elevational Gradient at Kufri, HP, India: The Potential Roles of Regional Pollution and Localized Grazing. Forests, 2021, 12, 400.	2.1	2
8	Exotic avenue plantations turning foe: Invasive potential, distribution and impact of Broussonetia papyrifera in Chandigarh, India. Urban Forestry and Urban Greening, 2021, 59, 127010.	5.3	10
9	Biomass allocation and phenotypic plasticity are key elements of successful invasion of Parthenium hysterophorus at high elevation. Environmental and Experimental Botany, 2021, 184, 104392.	4.2	36
10	Nature of phytotoxic interference of alien weed â€~Calyptocarpus vialis' against some crop plants. Environmental Monitoring and Assessment, 2021, 193, 334.	2.7	10
11	Salicylic acid pre-treatment modulates Pb2+-induced DNA damage vis-Ã-vis oxidative stress in Allium cepa roots. Environmental Science and Pollution Research, 2021, 28, 51989-52000.	5.3	12
12	Amelioration potential of $\hat{1}^2$ -pinene on Cr(VI)-induced toxicity on morphology, physiology and ultrastructure of maize. Environmental Science and Pollution Research, 2021, 28, 62431-62443.	5.3	11
13	Cytotoxic and genotoxic assessment of agricultural soils from an industrial region. Environmental Monitoring and Assessment, 2021, 193, 526.	2.7	2
14	Parthenin—A Sesquiterpene Lactone with Multifaceted Biological Activities: Insights and Prospects. Molecules, 2021, 26, 5347.	3.8	5
15	Bridging the gap: linking morpho-functional traits' plasticity with hyperaccumulation. Environmental Monitoring and Assessment, 2021, 193, 762.	2.7	5
16	Comparative cyto- and genotoxicity of 900†MHz and 1800†MHz electromagnetic field radiations in root meristems of Allium cepa. Ecotoxicology and Environmental Safety, 2020, 188, 109786.	6.0	17
17	Insights into the tolerance and phytoremediation potential of Coronopus didymus L. (Sm) grown under zinc stress. Chemosphere, 2020, 244, 125350.	8.2	47
18	Evaluating the role of phenology in managing urban invasions: A case study of Broussonetia papyrifera. Urban Forestry and Urban Greening, 2020, 48, 126583.	5.3	8

#	Article	IF	CITATIONS
19	Elucidation of genetic diversity base in Calotropis procera – a potentially emerging new fibre resource. Plant Genetic Resources: Characterisation and Utilisation, 2020, 18, 159-167.	0.8	5
20	Patterns of plant communities along vertical gradient in Dhauladhar Mountains in Lesser Himalayas in North-Western India. Science of the Total Environment, 2020, 716, 136919.	8.0	38
21	Appraisal of phytotoxic, cytotoxic and genotoxic potential of essential oil of a medicinal plant Vitex negundo. Industrial Crops and Products, 2020, 145, 112083.	5.2	29
22	Chemical characterization, phytotoxic, and cytotoxic activities of essential oil of Mentha longifolia. Environmental Science and Pollution Research, 2020, 27, 13512-13523.	5.3	23
23	Chemical profiling, cytotoxicity and phytotoxicity of foliar volatiles of Hyptis suaveolens. Ecotoxicology and Environmental Safety, 2019, 171, 863-870.	6.0	36
24	24-Epibrassinolide pre-treatment reduces alkaline-induced oxidative stress in red rice seedlings. Environmental Science and Pollution Research, 2019, 26, 23192-23197.	5.3	9
25	Nitric oxide induced modulations in adventitious root growth, lignin content and lignin synthesizing enzymes in the hypocotyls of Vigna radiata. Plant Physiology and Biochemistry, 2019, 141, 225-230.	5.8	15
26	Appraisal of immediate and late effects of mobile phone radiations at 2100ÂMHz on mitotic activity and DNA integrity in root meristems of Allium cepa. Protoplasma, 2019, 256, 1399-1407.	2.1	14
27	Phenotypic variations alter the ecological impact of invasive alien species: Lessons from Parthenium hysterophorus. Journal of Environmental Management, 2019, 241, 187-197.	7.8	27
28	Exposure to mobile phone radiations at 2350ÂMHz incites cyto- and genotoxic effects in root meristems of Allium cepa. Journal of Environmental Health Science & Engineering, 2019, 17, 97-104.	3.0	13
29	β-Pinene moderates Cr(VI) phytotoxicity by quenching reactive oxygen species and altering antioxidant machinery in maize. Environmental Science and Pollution Research, 2019, 26, 456-463.	5.3	11
30	Ethylenediamine disuccinic acid enhanced phytoextraction of nickel from contaminated soils using Coronopus didymus (L.) Sm Chemosphere, 2018, 205, 234-243.	8.2	56
31	Phytoremediation of lead by a wild, non-edible Pb accumulator <i>Coronopus didymus</i> (L.) Brassicaceae. International Journal of Phytoremediation, 2018, 20, 483-489.	3.1	41
32	Appraising the role of environment friendly chelants in alleviating lead by Coronopus didymus from Pb-contaminated soils. Chemosphere, 2017, 182, 129-136.	8.2	53
33	Chemical Characterization and Phytotoxicity of Foliar Volatiles and Essential Oil of <i>Callistemon viminalis</i> . Journal of Essential Oil-bearing Plants: JEOP, 2017, 20, 535-545.	1.9	8
34	Phytotoxicity and weed management potential of leaf extracts of Callistemon viminalis against the weeds of rice. Acta Physiologiae Plantarum, 2017, 39, 1.	2.1	7
35	Exposure to 2100 MHz electromagnetic field radiations induces reactive oxygen species generation in Allium cepa roots. Journal of Microscopy and Ultrastructure, 2017, 5, 225.	0.4	21
36	Phenological behaviour of <scp><i>Parthenium hysterophorus</i></scp> in response to climatic variations according to the extended BBCH scale. Annals of Applied Biology, 2017, 171, 316-326.	2.5	15

#	Article	IF	CITATIONS
37	The impact of invasive Hyptis suaveolens on the floristic composition of the periurban ecosystems of Chandigarh, northwestern India. Flora: Morphology, Distribution, Functional Ecology of Plants, 2017, 233, 156-162.	1.2	26
38	Phytotoxicity and cytotoxicity of Citrus aurantiifolia essential oil and its major constituents: Limonene and citral. Industrial Crops and Products, 2017, 108, 708-715.	5.2	78
39	Alterations in photosynthetic pigments, protein, and carbohydrate metabolism in a wild plant Coronopus didymus L. (Brassicaceae) under lead stress. Acta Physiologiae Plantarum, 2017, 39, 1.	2.1	42
40	Tolerance and hyperaccumulation of cadmium by a wild, unpalatable herb Coronopus didymus (L.) Sm. (Brassicaceae). Ecotoxicology and Environmental Safety, 2017, 135, 209-215.	6.0	124
41	β-Pinene partially ameliorates Cr(VI)-inhibited growth and biochemical changes in emerging seedlings. Plant Growth Regulation, 2016, 79, 243-249.	3.4	6
42	Effect of lead on oxidative status, antioxidative response and metal accumulation in Coronopus didymus. Plant Physiology and Biochemistry, 2016, 105, 290-296.	5.8	106
43	EMF radiations (1800ÂMHz)-inhibited early seedling growth of maize (Zea mays) involves alterations in starch and sucrose metabolism. Protoplasma, 2016, 253, 1043-1049.	2.1	28
44	Exogenous Nitric Oxide (NO) Interferes with Lead (Pb)-Induced Toxicity by Detoxifying Reactive Oxygen Species in Hydroponically Grown Wheat (Triticum aestivum) Roots. PLoS ONE, 2015, 10, e0138713.	2.5	77
45	Biochemical Adaptations in Zea mays Roots to Short-Term Pb2+ Exposure: ROS Generation and Metabolism. Bulletin of Environmental Contamination and Toxicology, 2015, 95, 246-253.	2.7	32
46	Eugenol-inhibited root growth in Avena fatua involves ROS-mediated oxidative damage. Pesticide Biochemistry and Physiology, 2015, 118, 64-70.	3.6	42
47	Mapping â€~consistency' in India's climate change position: Dynamics and dilemmas of science diplomacy Ambio, 2015, 44, 592-599.	^{/.} 5.5	6
48	Adaptations to oxidative stress in Zea mays roots under short-term Pb2+ exposure. Biologia (Poland), 2015, 70, 190-197.	1.5	16
49	Herbicidal activity of eugenol towards some grassy and broad-leaved weeds. Journal of Pest Science, 2015, 88, 209-218.	3.7	34
50	Ferulic acid impairs rhizogenesis and root growth, and alters associated biochemical changes in mung bean (<i>Vigna radiata</i>) hypocotyls. Journal of Plant Interactions, 2014, 9, 267-274.	2.1	47
51	Ni+2-inhibited radicle growth in germinating wheat seeds involves alterations in sugar metabolism. Acta Physiologiae Plantarum, 2014, 36, 923-929.	2.1	4
52	Negative effect of litter of invasive weed Lantana camara on structure and composition of vegetation in the lower Siwalik Hills, northern India. Environmental Monitoring and Assessment, 2014, 186, 3379-3389.	2.7	32
53	Morphological, anatomical, and ultrastructural changes (visualized through scanning electron) Tj ETQq1 1 0.7843	14 rgBT / 2.1	Overlock 10
54	Reactive oxygen species generation and antioxidant defense system in hydroponically grown wheat (Triticum aestivum) upon β-pinene exposure: an early time course assessment. Acta Physiologiae Plantarum, 2014, 36, 3137-3146.	2.1	10

#	Article	IF	CITATIONS
55	Pb-inhibited mitotic activity in onion roots involves DNA damage and disruption of oxidative metabolism. Ecotoxicology, 2014, 23, 1292-1304.	2.4	22
56	Î ² -Pinene inhibited germination and early growth involves membrane peroxidation. Protoplasma, 2013, 250, 691-700.	2.1	53
57	Cr(VI) Imposed Toxicity in Maize Seedlings Assessed in Terms of Disruption in Carbohydrate Metabolism. Biological Trace Element Research, 2013, 156, 316-322.	3.5	16
58	Lead (Pb)-induced biochemical and ultrastructural changes in wheat (Triticum aestivum) roots. Protoplasma, 2013, 250, 53-62.	2.1	70
59	Genetically Modified Organisms: An Indian Ethical Dilemma. Journal of Agricultural and Environmental Ethics, 2013, 26, 621-628.	1.7	7
60	Chromium toxicity and tolerance in plants. Environmental Chemistry Letters, 2013, 11, 229-254.	16.2	461
61	Novel weapon hypothesis for the successful establishment of invasive plants in alien environments. , 2013, , 19-28.		1
62	Invasive plant ecology. , 2013, , 1-6.		2
63	Role of Monoterpenes in Eucalyptus Communities. Current Bioactive Compounds, 2012, 8, 101-107.	0.5	9
64	A time course assessment of changes in reactive oxygen species generation and antioxidant defense in hydroponically grown wheat in response to lead ions (Pb2+). Protoplasma, 2012, 249, 1091-1100.	2.1	36
65	Assessment of inÂvitro antioxidant activity of essential oil of Eucalyptus citriodora (lemon-scented) Tj ETQq1 1 (D.784314	rgBJ_/Overloc
66	Artemisia scoparia essential oil inhibited root growth involves reactive oxygen species (ROS)-mediated disruption of oxidative metabolism: InÂvivo ROS detection and alterations in antioxidant enzymes. Biochemical Systematics and Ecology, 2012, 44, 390-399.	1.3	33
67	Phytotoxicity of decomposing below-ground residues of Ageratum conyzoides: nature and dynamics of release of phytotoxins. Acta Physiologiae Plantarum, 2012, 34, 1075-1081.	2.1	5
68	Arsenic (As) Inhibits Radicle Emergence and Elongation in Phaseolus aureus by Altering Starch-Metabolizing Enzymes Vis-A-Vis Disruption of Oxidative Metabolism. Biological Trace Element Research, 2012, 146, 360-368.	3.5	42
69	Chemical characterization and phytotoxicity of volatile essential oil from leaves of Anisomeles indica (Lamiaceae). Biochemical Systematics and Ecology, 2012, 41, 104-109.	1.3	27
70	Cell phone electromagnetic field radiations affect rhizogenesis through impairment of biochemical processes. Environmental Monitoring and Assessment, 2012, 184, 1813-1821.	2.7	40
71	Growth, photosynthetic activity and oxidative stress in wheat (Triticum aestivum) after exposure of lead to soil. Journal of Environmental Biology, 2012, 33, 265-9.	0.5	30
72	Chemical characterization and allelopathic potential of volatile oil of <i>Eucalyptus tereticornis</i> against <i>Amaranthus viridis</i> . Journal of Plant Interactions, 2011, 6, 297-302.	2.1	31

#	Article	IF	CITATIONS
73	Citronellol Disrupts Membrane Integrity by Inducing Free Radical Generation. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2011, 66, 260-266.	1.4	22
74	Lead (Pb)-Inhibited Radicle Emergence in Brassica campestris Involves Alterations in Starch-Metabolizing Enzymes. Biological Trace Element Research, 2011, 144, 1295-1301.	3.5	46
75	Phytotoxic effects of β-pinene on early growth and associated biochemical changes in rice. Acta Physiologiae Plantarum, 2011, 33, 2369-2376.	2.1	46
76	Citronellol Disrupts Membrane Integrity by Inducing Free Radical Generation. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2011, 66, 0260.	1.4	2
77	Phytotoxic effects of volatile oil from Artemisia scoparia against weeds and its possible use as a bioherbicide. Industrial Crops and Products, 2010, 32, 54-61.	5.2	116
78	Cell Phone Radiations Affect Early Growth of Vigna radiata (Mung Bean) through Biochemical Alterations. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2010, 65, 66-72.	1.4	27
79	In vitro screening of essential oil from young and mature leaves of Artemisia scoparia compared to its major constituents for free radical scavenging activity. Food and Chemical Toxicology, 2010, 48, 1040-1044.	3.6	37
80	Mobile phone radiation inhibits Vigna radiata (mung bean) root growth by inducing oxidative stress. Science of the Total Environment, 2009, 407, 5543-5547.	8.0	63
81	Caffeic acid inhibits in vitro rooting in mung bean [Vigna radiata (L.) Wilczek] hypocotyls by inducing oxidative stress. Plant Growth Regulation, 2009, 57, 21-30.	3.4	37
82	Nature of interference potential of leaf debris of Ageratum conyzoides. Plant Growth Regulation, 2009, 57, 137-144.	3.4	17
83	Essential Oil of Artemisia scoparia Inhibits Plant Growth by Generating Reactive Oxygen Species and Causing Oxidative Damage. Journal of Chemical Ecology, 2009, 35, 154-162.	1.8	125
84	Chemical composition and antioxidant activity of essential oil from residues of Artemisia scoparia. Food Chemistry, 2009, 114, 642-645.	8.2	70
85	Role of root-mediated interactions in phytotoxic interference of Ageratum conyzoides with rice (Oryza sativa). Flora: Morphology, Distribution, Functional Ecology of Plants, 2009, 204, 388-395.	1.2	39
86	Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice). Nitric Oxide - Biology and Chemistry, 2009, 20, 289-297.	2.7	214
87	Characterization and Antioxidant Activity of Essential Oils from Fresh and Decaying Leaves of <i>Eucalyptus tereticornis</i> . Journal of Agricultural and Food Chemistry, 2009, 57, 6962-6966.	5.2	54
88	Chemical composition of essential oil from leaves of Chenopodium ambrosioides from Chandigarh, India. Chemistry of Natural Compounds, 2008, 44, 378-379.	0.8	20
89	Constituents of Leaf Essential Oil of Mentha longifolia from India. Chemistry of Natural Compounds, 2008, 44, 528-529.	0.8	20
90	Caffeine affects adventitious rooting and causes biochemical changes in the hypocotyl cuttings of mung bean (Phaseolus aureus Roxb.). Acta Physiologiae Plantarum, 2008, 30, 401-405.	2.1	21

#	Article	IF	CITATIONS
91	Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots. Environmental and Experimental Botany, 2008, 63, 158-167.	4.2	225
92	Caffeic acid affects early growth, and morphogenetic response of hypocotyl cuttings of mung bean (Phaseolus aureus). Journal of Plant Physiology, 2008, 165, 297-305.	3.5	108
93	P59. Protective effect of nitric oxide against arsenic-induced oxidative stress in rice. Nitric Oxide - Biology and Chemistry, 2008, 19, 56.	2.7	0
94	Eucalyptus essential oil as a natural pesticide. Forest Ecology and Management, 2008, 256, 2166-2174.	3.2	592
95	Phytotoxicity of Major Constituents of the Volatile Oil from Leaves of Artemisia scoparia Waldst. & Kit Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2008, 63, 663-666.	1.4	24
96	Ecological Status of Some Invasive Plants of Shiwalik Himalayas in Northwestern India. , 2008, , 143-155.		2
97	Assessment of Phytotoxicity of Parthenin. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2007, 62, 367-372.	1.4	19
98	Root-mediated Allelopathic Interference of Nettle-leaved Goosefoot (Chenopodium murale) on Wheat (Triticum aestivum). Journal of Agronomy and Crop Science, 2007, 193, 37-44.	3.5	59
99	Potential utilization of dried powder of Tagetes minuta as a natural herbicide for managing rice weeds. Crop Protection, 2007, 26, 566-571.	2.1	59
100	Phytotoxicity of a medicinal plant, Anisomeles indica, against Phalaris minor and its potential use as natural herbicide in wheat fields. Crop Protection, 2007, 26, 948-952.	2.1	40
101	Alternative control of littleseed canary grass using eucalypt oil. Agronomy for Sustainable Development, 2007, 27, 171-177.	5.3	57
102	Phenolic allelochemicals released by Chenopodium murale affect the growth, nodulation and macromolecule content in chickpea and pea. Plant Growth Regulation, 2007, 51, 119-128.	3.4	102
103	Arsenic-induced root growth inhibition in mung bean (Phaseolus aureus Roxb.) is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth Regulation, 2007, 53, 65-73.	3.4	274
104	Ecological Interactions in Agroforestry. , 2007, , 3-14.		3
105	Phytotoxicity of volatile oil from Eucalyptus citriodora against some weedy species. Journal of Environmental Biology, 2007, 28, 63-6.	0.5	26
106	Assessment of allelopathic interference ofChenopodium albumthrough its leachates, debris extracts, rhizosphere and amended soil. Archives of Agronomy and Soil Science, 2006, 52, 705-715.	2.6	35
107	Allelopathic interactions in agroecosystems. , 2006, , 465-493.		4
108	Phytotoxicity of the Volatile Monoterpene Citronellal against Some Weeds. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2006, 61, 334-340.	1.4	51

#	Article	IF	CITATIONS
109	Effect of 2-Benzoxazolinone (BOA) on Seedling Growth and Associated Biochemical Changes in Mung Bean (Phaseolus aureus). Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2006, 61, 709-714.	1.4	13
110	Phytotoxicity of Ageratum conyzoides residues towards growth and nodulation of Cicer arietinum. Agriculture, Ecosystems and Environment, 2006, 113, 399-401.	5.3	21
111	I-DOPA (I-3,4-dihydroxyphenylalanine) affects rooting potential and associated biochemical changes in hypocotyl of mung bean, and inhibits mitotic activity in onion root tips. Plant Growth Regulation, 2006, 49, 229-235.	3.4	8
112	Status, invasiveness and environmental threats of three tropical American invasive weeds (Parthenium hysterophorus L., Ageratum conyzoides L., Lantana camara L.) in India. Biological Invasions, 2006, 8, 1501-1510.	2.4	208
113	2-Benzoxazolinone (BOA) induced oxidative stress, lipid peroxidation andÂchanges inÂsomeÂantioxidant enzyme activities inÂmung bean (PhaseolusÂaureus). Plant Physiology and Biochemistry, 2006, 44, 819-827.	5.8	92
114	Chemical Composition and Inhibitory Activity of Essential Oil from Decaying Leaves of Eucalyptus citriodora. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2006, 61, 52-56.	1.4	43
115	Chemical Composition and Phytotoxicity of Volatile Essential Oil from Intact and Fallen Leaves of Eucalyptus citriodora. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2006, 61, 465-471.	1.4	69
116	Â-Pinene Inhibits Growth and Induces Oxidative Stress in Roots. Annals of Botany, 2006, 98, 1261-1269.	2.9	241
117	Phytotoxic effects of Parthenium hysterophorus residues on three Brassica species. Weed Biology and Management, 2005, 5, 105-109.	1.4	81
118	Effects of 2-benzoxazolinone on the germination, early growth and morphogenetic response of mung bean (Phaseolus aureus). Annals of Applied Biology, 2005, 147, 267-274.	2.5	34
119	Herbicidal activity of volatile oils from Eucalyptus citriodora against Parthenium hysterophorus. Annals of Applied Biology, 2005, 146, 89-94.	2.5	115
120	Management of Invasive Exotic Weeds Requires Community Participation ¹ . Weed Technology, 2004, 18, 1445-1448.	0.9	26
121	Impact of Invasive Plants on the Structure and Composition of Natural Vegetation of Northwestern Indian Himalayas ¹ . Weed Technology, 2004, 18, 1296-1300.	0.9	74
122	Phytotoxicity of lemon-scented eucalypt oil and its potential use as a bioherbicide. Crop Protection, 2004, 23, 1209-1214.	2.1	95
123	Assessment of allelopathic properties of Parthenium hysterophorus residues. Agriculture, Ecosystems and Environment, 2003, 95, 537-541.	5.3	76
124	Phytotoxic Interference of Ageratum conyzoides with Wheat (Triticum aestivum). Journal of Agronomy and Crop Science, 2003, 189, 341-346.	3.5	53
125	Allelopathic Interactions and Allelochemicals: New Possibilities for Sustainable Weed Management. Critical Reviews in Plant Sciences, 2003, 22, 239-311.	5.7	286
126	Allelopathic effect of two volatile monoterpenes against bill goat weed (Ageratum conyzoides L.). Crop Protection, 2002, 21, 347-350.	2.1	68

#	Article	IF	CITATIONS
127	Allelopathic effects of parthenin against two weedy species, Avena fatua and Bidens pilosa. Environmental and Experimental Botany, 2002, 47, 149-155.	4.2	69
128	Antifungal activity of the volatile oil of Eucalyptus citriodora. Fìtoterapìâ, 2002, 73, 261-262.	2.2	83
129	Phytotoxic effect of Parthenium residues on the selected soil properties and growth of chickpea and radish. Weed Biology and Management, 2002, 2, 73-78.	1.4	56
130	Phytotoxicity of Sunflower Residues against Some Summer Season Crops. Journal of Agronomy and Crop Science, 2002, 188, 19-24.	3.5	49
131	Comparative phytotoxicity of four monoterpenes against Cassia occidentalis. Annals of Applied Biology, 2002, 141, 111-116.	2.5	102
132	Effect of parthenina sesquiterpene lactone from Parthenium hysterophoruson early growth and physiology of Ageratum conyzoides. Journal of Chemical Ecology, 2002, 28, 2169-2179.	1.8	36
133	Allelopathy in Agroecosystems. The Journal of Crop Improvement: Innovations in Practiceory and Research, 2001, 4, 1-41.	0.4	94
134	Vegetation exclusion underCasuarina equisetifoliaL.: Does allelopathy play a role?. Community Ecology, 2001, 2, 93-100.	0.9	15
135	Crop Allelopathy and Its Role in Ecological Agriculture. The Journal of Crop Improvement: Innovations in Practiceory and Research, 2001, 4, 121-161.	0.4	68
136	Allelopathic interference of Populus deltoides with some winter season crops. Agronomy for Sustainable Development, 2001, 21, 139-146.	0.8	18
137	Allelopathy of Gymnospermous Trees. Journal of Forest Research, 1999, 4, 245-254.	1.4	20
138	Autotoxicity: Concept, Organisms, and Ecological Significance. Critical Reviews in Plant Sciences, 1999, 18, 757-772.	5.7	265
139	Allelopathic Interactions in Agroforestry Systems. Critical Reviews in Plant Sciences, 1999, 18, 773-796.	5.7	65
140	IMPACT OFPOPULUS DELTOIDESANDDALBERGIA SISSOOSHELTERBELTS ON WHEAT—A COMPARATIVE STUDY. Forests, Trees and Livelihoods, 1999, 10, 51-60.	0.2	14
141	Autotoxicity: Concept, Organisms, and Ecological Significance. Critical Reviews in Plant Sciences, 1999, 18, 757-772.	5.7	4
142	Effect of Poplar (Populus deltoides) shelterbelt on the growth and yield of wheat in Punjab, India. Agroforestry Systems, 1998, 40, 207-213.	2.0	13
143	Eucalypt oils for the control of Parthenium (Parthenium hysterophorus L.). Crop Protection, 1998, 17, 119-122.	2.1	42
144	Allelopathic Interactions in Forestry Systems. Forestry Sciences, 1998, , 269-283.	0.4	14

#	Article	IF	CITATIONS
145	Comparative Vegetation Analysis under Multipurpose Plantations. Forestry Sciences, 1998, , 285-291.	0.4	0
146	Allelopathy and Its Implications in Agroecosystems. The Journal of Crop Improvement: Innovations in Practiceory and Research, 1997, 1, 169-202.	0.4	84
147	Growth regulatory response of parthenin and its derivatives. Plant Growth Regulation, 1997, 21, 189-194.	3.4	14
148	Status of Floor Vegetation under Some Monoculture and Mixculture Plantations in North India. Journal of Forest Research, 1996, 1, 205-209.	1.4	13
149	Autotoxic impact of essential oil extracted fromLantana camara L Biologia Plantarum, 1993, 35, 293.	1.9	12
150	A mathematical model to predict the tissue response to parthenin - An allelochemical. Biologia Plantarum, 1993, 35, 567.	1.9	18
151	Impact of Eucalyptus tereticornis Sm. shelterbelts on crops. Agroforestry Systems, 1992, 20, 253-266.	2.0	29
152	Allelopathic impact of volatile components fromEucalyptus on crop plants. Biologia Plantarum, 1991, 33, 475.	1.9	32
153	Effect of eucalyptus oil on germination and growth of Phaseolus aureus Roxb Plant and Soil, 1991, 137, 223-227.	3.7	17
154	Influence of eucalypt shelterbelt on winter season agroecosystems. Agriculture, Ecosystems and Environment, 1990, 33, 23-31.	5.3	21
155	Autotoxicity of Ragweed Parthenium (Parthenium hysterophorus). Weed Science, 1987, 35, 629-632.	1.5	29
156	The Condition of the Apical Meristem of Seedlings Responsive to a Promotive Effect of Abscisic Acid on Flowering in the Short-Day Plant, Chenopodium rubrum. Zeitschrift FÃ1⁄4r Pflanzenphysiologie, 1981, 103, 45-51.	1.4	9
157	Effects of Abscisic Acid on the Growth Pattern of the Shoot Apical Meristem and on Flowering in Chenopodium rubrum L Annals of Botany, 1981, 48, 777-785.	2.9	9
158	Enzyme activity and electrophoretic pattern of isoenzymes of peroxidase, esterase and alkaline and acid phosphatase in relation to flowering inAmaranthus viridis L a quantitative SD plant. Biologia Plantarum, 1981, 23, 335-341.	1.9	1
159	Growth correlations in shoot apices ofBrassica campestris L. during transition to flowering. Biologia Plantarum, 1981, 23, 41-45.	1.9	3
160	Photo-induced changes in proteins associated with floral induction in Amaranthus. Plant and Cell Physiology, 1980, 21, 1483-1490.	3.1	6
161	Promotory effect of GA13 on flowering ofAmaranthus — a short day plant. Biologia Plantarum, 1979, 21, 206-213.	1.9	7