Jane-Jane Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4489262/publications.pdf

Version: 2024-02-01

IANE-JANE CHEN

#	Article	IF	CITATIONS
1	Translational control by heme-regulated elF2α kinase during erythropoiesis. Current Opinion in Hematology, 2022, 29, 103-111.	2.5	6
2	The eIF2α kinase HRI triggers the autophagic clearance of cytosolic protein aggregates. Journal of Biological Chemistry, 2021, 296, 100050.	3.4	21
3	Targeting elevated heme levels to treat a mouse model for Diamond-Blackfan Anemia. Experimental Hematology, 2021, , .	0.4	3
4	EpoR stimulates rapid cycling and larger red cells during mouse and human erythropoiesis. Nature Communications, 2021, 12, 7334.	12.8	18
5	Requirement of activating transcription factor 5 for murine fetal liver erythropoiesis. British Journal of Haematology, 2020, 188, 582-585.	2.5	7
6	HRI stress signaling and HbF production. Blood, 2020, 135, 2113-2114.	1.4	1
7	Control of human hemoglobin switching by LIN28B-mediated regulation of BCL11A translation. Nature Genetics, 2020, 52, 138-145.	21.4	73
8	The heme-regulated inhibitor is a cytosolic sensor of protein misfolding that controls innate immune signaling. Science, 2019, 365, .	12.6	81
9	Heme-regulated elF2α kinase in erythropoiesis and hemoglobinopathies. Blood, 2019, 134, 1697-1707.	1.4	60
10	Regulation of globin-heme balance in Diamond-Blackfan anemia by HSP70/GATA1. Blood, 2019, 133, 1358-1370.	1.4	44
11	Bitopertin, a selective oral GLYT1 inhibitor, improves anemia in a mouse model of β-thalassemia. JCI Insight, 2019, 4, .	5.0	19
12	HRI coordinates translation necessary for protein homeostasis and mitochondrial function in erythropoiesis. ELife, 2019, 8, .	6.0	47
13	HRI coordinates translation by elF2αP and mTORC1 to mitigate ineffective erythropoiesis in mice during iron deficiency. Blood, 2018, 131, 450-461.	1.4	55
14	ATF4 Regulates CD4+ T Cell Immune Responses through Metabolic Reprogramming. Cell Reports, 2018, 23, 1754-1766.	6.4	69
15	miR-214 protects erythroid cells against oxidative stress by targeting ATF4 and EZH2. Free Radical Biology and Medicine, 2016, 92, 39-49.	2.9	43
16	Heme-Regulated eIF2α Kinase Coordinates Translational Repression of eIF2αP and mTORC1 Signaling during Iron Deficiency to Mitigate Ineffective Erythropoiesis. Blood, 2016, 128, 1037-1037.	1.4	11
17	Microdosimetric and Biological Effects of Photon Irradiation at Different Energies in Bone Marrow. Radiation Research, 2015, 184, 378-391.	1.5	12
18	Translational control by heme-regulated eIF2α kinase during erythropoiesis. Current Opinion in Hematology, 2014, 21, 172-178.	2.5	75

JANE-JANE CHEN

#	Article	IF	CITATIONS
19	Graphene Oxide Induces Toll-like Receptor 4 (TLR4)-Dependent Necrosis in Macrophages. ACS Nano, 2013, 7, 5732-5745.	14.6	229
20	Heme-regulated elF2α kinase activated Atf4 signaling pathway in oxidative stress and erythropoiesis. Blood, 2012, 119, 5276-5284.	1.4	137
21	HEME-REGULATED eIF2Î \pm KINASE IN TRANSLATION AND ERYTHROPOIESIS. , 2011, , 55-84.		0
22	Heme-Regulated elF2α Kinase in Erythropoiesis and Oxidative Stress. Blood, 2011, 118, SCI-23-SCI-23.	1.4	0
23	Ppp1r15 gene knockout reveals an essential role for translation initiation factor 2 alpha (elF2α) dephosphorylation in mammalian development. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1832-1837.	7.1	230
24	Haemâ€regulated eIF2α kinase is necessary for adaptive gene expression in erythroid precursors under the stress of iron deficiency. British Journal of Haematology, 2008, 143, 129-137.	2.5	42
25	Deficiency of heme-regulated eIF2Â kinase decreases hepcidin expression and splenic iron in HFE-/- mice. Haematologica, 2008, 93, 753-756.	3.5	20
26	Oxidative Stress Signaling Pathway of Heme Regulated eIF2α Kinase in mitigating the Severity of β-Thalassemia. Blood, 2008, 112, 127-127.	1.4	4
27	Regulation of protein synthesis by the heme-regulated eIF2α kinase: relevance to anemias. Blood, 2007, 109, 2693-2699.	1.4	269
28	The function of heme-regulated eIF2α kinase in murine iron homeostasis and macrophage maturation. Journal of Clinical Investigation, 2007, 117, 3296-3305.	8.2	81
29	HRI Protects Erythroid Precursors in Iron Deficiency and in β-Thalassemia by Maintaining GATA-1 and Fog-1 Expressions Blood, 2006, 108, 266-266.	1.4	0
30	Heme-regulated Inhibitor Kinase-mediated Phosphorylation of Eukaryotic Translation Initiation Factor 2 Inhibits Translation, Induces Stress Granule Formation, and Mediates Survival upon Arsenite Exposure. Journal of Biological Chemistry, 2005, 280, 16925-16933.	3.4	362
31	Heme-regulated elF2α kinase modifies the phenotypic severity of murine models of erythropoietic protoporphyria and β-thalassemia. Journal of Clinical Investigation, 2005, 115, 1562-1570.	8.2	89
32	Phosphorylation of Eukaryotic Initiation Factor 2 by Heme-Regulated Inhibitor Kinase-Related Protein Kinases in Schizosaccharomyces pombe Is Important for Resistance to Environmental Stresses. Molecular and Cellular Biology, 2002, 22, 7134-7146.	2.3	71
33	Multiple Autophosphorylation Is Essential for the Formation of the Active and Stable Homodimer of Heme-Regulated eIF2α Kinaseâ€. Biochemistry, 2001, 40, 11543-11551.	2.5	51
34	Brain ischemia and reperfusion activates the eukaryotic initiation factor 2α kinase, PERK. Journal of Neurochemistry, 2001, 77, 1418-1421.	3.9	209
35	Hsp90 Regulates p50 Function during the Biogenesis of the Active Conformation of the Heme-regulated elF2α Kinase. Journal of Biological Chemistry, 2001, 276, 206-214.	3.4	79
36	Translation Initiation Control by Heme-Regulated Eukaryotic Initiation Factor 2α Kinase in Erythroid Cells under Cytoplasmic Stresses. Molecular and Cellular Biology, 2001, 21, 7971-7980.	2.3	282

JANE-JANE CHEN

#	Article	IF	CITATIONS
37	The N-terminal region of the heme-regulated eIF2α kinase is an autonomous heme binding domain. FEBS Journal, 2000, 267, 498-506.	0.2	27
38	Two Heme-binding Domains of Heme-regulated Eukaryotic Initiation Factor-2α Kinase. Journal of Biological Chemistry, 2000, 275, 5171-5178.	3.4	92
39	Regulation of hemoglobin synthesis and proliferation of differentiating erythroid cells by heme-regulated eIF-2α kinase. Blood, 2000, 96, 3241-3248.	1.4	38
40	Upregulation of protein synthesis initiation factor eIF-4E is an early event during colon carcinogenesis. Oncogene, 1999, 18, 2507-2517.	5.9	168
41	Expression of the Eukaryotic Translation Initiation Factors 4E and 2α in Non-Hodgkin's Lymphomas. American Journal of Pathology, 1999, 155, 247-255.	3.8	132
42	Evidence that Hsc70 negatively modulates the activation of the heme-regulated eIF-2alpha kinase in rabbit reticulocyte lysate. FEBS Journal, 1998, 255, 552-562.	0.2	33
43	Heme-regulated elF-2alpha kinase purifies as a hemoprotein. FEBS Journal, 1998, 258, 820-830.	0.2	65
44	The Effects of Pyrroloquinoline Quinone on Heme-Regulated elF-2α Kinase and elF-2B Activities in Eukaryotic Protein Synthesis. Blood Cells, Molecules, and Diseases, 1997, 23, 177-187.	1.4	5
45	Hsp90 Is Obligatory for the Heme-regulated eIF- $2\hat{1}$ ± Kinase to Acquire and Maintain an Activable Conformation. Journal of Biological Chemistry, 1997, 272, 11648-11656.	3.4	74
46	The Role of the 90-kDa Heat-Shock Protein and its Associated Cohorts in Stabilizing the Heme-Regulated Eif-24Al Kinase in Reticulocyte Lysates during Heat Stress. FEBS Journal, 1997, 246, 461-470.	0.2	35
47	Effect of Interferon on Protein Translation during Growth Stages of 3T3 Cells. Archives of Biochemistry and Biophysics, 1996, 326, 290-297.	3.0	15
48	Eukaryotic Translation Initiation Factor 4E Regulates Expression of Cyclin D1 at Transcriptional and Post-transcriptional Levels. Journal of Biological Chemistry, 1995, 270, 21176-21180.	3.4	226
49	Regulation of protein synthesis by heme-regulated eIF-2α kinase. Trends in Biochemical Sciences, 1995, 20, 105-108.	7.5	298
50	Hemin enhances the differentiation of mouse 3T3 cells to adipocytes. Cell, 1981, 26, 117-122.	28.9	116
51	RNA and protein synthesis in cultured human fibroblasts derived from donors of various ages. Mechanisms of Ageing and Development, 1980, 13, 285-295.	4.6	18
52	The cellular location of dihydroorotate dehydrogenase: Relation to de novo biosynthesis of pyrimidines. Archives of Biochemistry and Biophysics, 1976, 176, 82-90.	3.0	137