Maria Kleppe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4489253/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A JAK/STAT-mediated inflammatory signaling cascade drives oncogenesis in AF10-rearranged AML. Blood, 2021, 137, 3403-3415.	1.4	8
2	Evaluating Clonal Hematopoiesis in Tumor-Infiltrating Leukocytes in Breast Cancer and Secondary Hematologic Malignancies. Journal of the National Cancer Institute, 2020, 112, 107-110.	6.3	10
3	Mathematical modeling reveals alternative JAK inhibitor treatment in myeloproliferative neoplasms. Haematologica, 2020, 105, e91-e94.	3.5	0
4	Targeting compensatory MEK/ERK activation increases JAK inhibitor efficacy in myeloproliferative neoplasms. Journal of Clinical Investigation, 2019, 129, 1596-1611.	8.2	84
5	TRAF6 Mediates Basal Activation of NF-κB Necessary for Hematopoietic Stem Cell Homeostasis. Cell Reports, 2018, 22, 1250-1262.	6.4	62
6	Hsp90 inhibition disrupts JAK-STAT signaling and leads to reductions in splenomegaly in patients with myeloproliferative neoplasms. Haematologica, 2018, 103, e5-e9.	3.5	18
7	Dual Targeting of Oncogenic Activation and Inflammatory Signaling Increases Therapeutic Efficacy in Myeloproliferative Neoplasms. Cancer Cell, 2018, 33, 29-43.e7.	16.8	186
8	LSD1 Inhibition Prolongs Survival in Mouse Models of MPN by Selectively Targeting the Disease Clone. HemaSphere, 2018, 2, e54.	2.7	74
9	Genomic and Proteomic Profiling of AF10-Fusion Oncoproteins Reveal Mechanisms of Leukemogenesis and Actionable Targets. Blood, 2018, 132, 544-544.	1.4	6
10	Jak1 Integrates Cytokine Sensing to Regulate Hematopoietic Stem Cell Function and Stress Hematopoiesis. Cell Stem Cell, 2017, 21, 489-501.e7.	11.1	58
11	Endothelial-specific inhibition of NF-κB enhances functional haematopoiesis. Nature Communications, 2016, 7, 13829.	12.8	40
12	An Unexpected Chink in the Transcriptional Armor of Plasmacytoid Dendritic Neoplasms. Cancer Cell, 2016, 30, 659-660.	16.8	3
13	JAK1 As a Convergent Regulator of Hematopoietic Stem Cell Function and Stress Hematopoiesis. Blood, 2016, 128, 722-722.	1.4	3
14	Tumor-specific HSP90 inhibition as a therapeutic approach in JAK-mutant acute lymphoblastic leukemias. Blood, 2015, 126, 2479-2483.	1.4	36
15	Somatic mutations in leukocytes infiltrating primary breast cancers. Npj Breast Cancer, 2015, 1, 15005.	5.2	30
16	JAK–STAT Pathway Activation in Malignant and Nonmalignant Cells Contributes to MPN Pathogenesis and Therapeutic Response. Cancer Discovery, 2015, 5, 316-331.	9.4	252
17	CHZ868, a Type II JAK2 Inhibitor, Reverses Type I JAK Inhibitor Persistence and Demonstrates Efficacy in Myeloproliferative Neoplasms. Cancer Cell, 2015, 28, 15-28.	16.8	124
18	Lysine-Specific Histone Demethylase, LSD1, (KDM1A) As a Novel Therapeutic Target in Myeloproliferative Neoplasms, Blood, 2015, 126, 601-601.	1.4	3

MARIA KLEPPE

#	Article	IF	CITATIONS
19	Identifying somatic oncogenic mutations in leukocytes that infiltrate primary breast cancers Journal of Clinical Oncology, 2015, 33, 11000-11000.	1.6	0
20	TYK2–STAT1–BCL2 Pathway Dependence in T-cell Acute Lymphoblastic Leukemia. Cancer Discovery, 2013, 3, 564-577.	9.4	122
21	Genetic Alterations Activating Kinase and Cytokine Receptor Signaling in High-Risk Acute Lymphoblastic Leukemia. Cancer Cell, 2012, 22, 153-166.	16.8	621
22	Targeting β-catenin in CML: Leukemia Stem Cells Beware!. Cell Stem Cell, 2012, 10, 351-353.	11.1	16
23	The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature, 2012, 481, 157-163.	27.8	1,430
24	New pieces of a puzzle: The current biological picture of MPN. Biochimica Et Biophysica Acta: Reviews on Cancer, 2012, 1826, 415-422.	7.4	6
25	Mutation of the receptor tyrosine phosphatase PTPRC (CD45) in T-cell acute lymphoblastic leukemia. Blood, 2012, 119, 4476-4479.	1.4	96
26	MOHITO, a novel mouse cytokine-dependent T-cell line, enables studies of oncogenic signaling in the T-cell context. Haematologica, 2011, 96, 779-783.	3.5	12
27	Mutation analysis of the tyrosine phosphatase PTPN2 in Hodgkin's lymphoma and T-cell non-Hodgkin's lymphoma. Haematologica, 2011, 96, 1723-1727.	3.5	60
28	Loss or Inhibition of Stromal-Derived PIGF Prolongs Survival of Mice with Imatinib-Resistant Bcr-Abl1+ Leukemia. Cancer Cell, 2011, 19, 740-753.	16.8	124
29	PTPN2 negatively regulates oncogenic JAK1 in T-cell acute lymphoblastic leukemia. Blood, 2011, 117, 7090-7098.	1.4	76
30	Discovery of Novel Recurrent Mutations in Childhood Early T-Cell Precursor Acute Lymphoblastic Leukemia by Whole Genome Sequencing - a Report From the St Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project. Blood, 2011, 118, 68-68.	1.4	0
31	Deletion of the protein tyrosine phosphatase gene PTPN2 in T-cell acute lymphoblastic leukemia. Nature Genetics, 2010, 42, 530-535.	21.4	162
32	Deletion of the Protein Tyrosine Phosphatase Gene PTPN2 in T-Cell Acute Lymphoblastic Leukemia Blood, 2009, 114, 141-141.	1.4	0