Maria Kleppe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4489253/publications.pdf

Version: 2024-02-01

430874 501196 3,722 32 18 28 citations h-index g-index papers 32 32 32 6837 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature, 2012, 481, 157-163.	27.8	1,430
2	Genetic Alterations Activating Kinase and Cytokine Receptor Signaling in High-Risk Acute Lymphoblastic Leukemia. Cancer Cell, 2012, 22, 153-166.	16.8	621
3	JAK–STAT Pathway Activation in Malignant and Nonmalignant Cells Contributes to MPN Pathogenesis and Therapeutic Response. Cancer Discovery, 2015, 5, 316-331.	9.4	252
4	Dual Targeting of Oncogenic Activation and Inflammatory Signaling Increases Therapeutic Efficacy in Myeloproliferative Neoplasms. Cancer Cell, 2018, 33, 29-43.e7.	16.8	186
5	Deletion of the protein tyrosine phosphatase gene PTPN2 in T-cell acute lymphoblastic leukemia. Nature Genetics, 2010, 42, 530-535.	21.4	162
6	Loss or Inhibition of Stromal-Derived PIGF Prolongs Survival of Mice with Imatinib-Resistant Bcr-Abl1+ Leukemia. Cancer Cell, 2011, 19, 740-753.	16.8	124
7	CHZ868, a Type II JAK2 Inhibitor, Reverses Type I JAK Inhibitor Persistence and Demonstrates Efficacy in Myeloproliferative Neoplasms. Cancer Cell, 2015, 28, 15-28.	16.8	124
8	TYK2–STAT1–BCL2 Pathway Dependence in T-cell Acute Lymphoblastic Leukemia. Cancer Discovery, 2013, 3, 564-577.	9.4	122
9	Mutation of the receptor tyrosine phosphatase PTPRC (CD45) in T-cell acute lymphoblastic leukemia. Blood, 2012, 119, 4476-4479.	1.4	96
10	Targeting compensatory MEK/ERK activation increases JAK inhibitor efficacy in myeloproliferative neoplasms. Journal of Clinical Investigation, 2019, 129, 1596-1611.	8.2	84
11	PTPN2 negatively regulates oncogenic JAK1 in T-cell acute lymphoblastic leukemia. Blood, 2011, 117, 7090-7098.	1.4	76
12	LSD1 Inhibition Prolongs Survival in Mouse Models of MPN by Selectively Targeting the Disease Clone. HemaSphere, 2018, 2, e54.	2.7	74
13	TRAF6 Mediates Basal Activation of NF-κB Necessary for Hematopoietic Stem Cell Homeostasis. Cell Reports, 2018, 22, 1250-1262.	6.4	62
14	Mutation analysis of the tyrosine phosphatase PTPN2 in Hodgkin's lymphoma and T-cell non-Hodgkin's lymphoma. Haematologica, 2011, 96, 1723-1727.	3.5	60
15	Jak1 Integrates Cytokine Sensing to Regulate Hematopoietic Stem Cell Function and Stress Hematopoiesis. Cell Stem Cell, 2017, 21, 489-501.e7.	11.1	58
16	Endothelial-specific inhibition of NF-κB enhances functional haematopoiesis. Nature Communications, 2016, 7, 13829.	12.8	40
17	Tumor-specific HSP90 inhibition as a therapeutic approach in JAK-mutant acute lymphoblastic leukemias. Blood, 2015, 126, 2479-2483.	1.4	36
18	Somatic mutations in leukocytes infiltrating primary breast cancers. Npj Breast Cancer, 2015, 1, 15005.	5.2	30

#	Article	IF	CITATIONS
19	Hsp90 inhibition disrupts JAK-STAT signaling and leads to reductions in splenomegaly in patients with myeloproliferative neoplasms. Haematologica, 2018, 103, e5-e9.	3 . 5	18
20	Targeting Î ² -catenin in CML: Leukemia Stem Cells Beware!. Cell Stem Cell, 2012, 10, 351-353.	11.1	16
21	MOHITO, a novel mouse cytokine-dependent T-cell line, enables studies of oncogenic signaling in the T-cell context. Haematologica, 2011, 96, 779-783.	3.5	12
22	Evaluating Clonal Hematopoiesis in Tumor-Infiltrating Leukocytes in Breast Cancer and Secondary Hematologic Malignancies. Journal of the National Cancer Institute, 2020, 112, 107-110.	6.3	10
23	A JAK/STAT-mediated inflammatory signaling cascade drives oncogenesis in AF10-rearranged AML. Blood, 2021, 137, 3403-3415.	1.4	8
24	New pieces of a puzzle: The current biological picture of MPN. Biochimica Et Biophysica Acta: Reviews on Cancer, 2012, 1826, 415-422.	7.4	6
25	Genomic and Proteomic Profiling of AF10-Fusion Oncoproteins Reveal Mechanisms of Leukemogenesis and Actionable Targets. Blood, 2018, 132, 544-544.	1.4	6
26	An Unexpected Chink in the Transcriptional Armor of Plasmacytoid Dendritic Neoplasms. Cancer Cell, 2016, 30, 659-660.	16.8	3
27	Lysine-Specific Histone Demethylase, LSD1, (KDM1A) As a Novel Therapeutic Target in Myeloproliferative Neoplasms. Blood, 2015, 126, 601-601.	1.4	3
28	JAK1 As a Convergent Regulator of Hematopoietic Stem Cell Function and Stress Hematopoiesis. Blood, 2016, 128, 722-722.	1.4	3
29	Mathematical modeling reveals alternative JAK inhibitor treatment in myeloproliferative neoplasms. Haematologica, 2020, 105, e91-e94.	3.5	0
30	Deletion of the Protein Tyrosine Phosphatase Gene PTPN2 in T-Cell Acute Lymphoblastic Leukemia Blood, 2009, 114, 141-141.	1.4	0
31	Discovery of Novel Recurrent Mutations in Childhood Early T-Cell Precursor Acute Lymphoblastic Leukemia by Whole Genome Sequencing - a Report From the St Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project. Blood, 2011, 118, 68-68.	1.4	0
32	Identifying somatic oncogenic mutations in leukocytes that infiltrate primary breast cancers Journal of Clinical Oncology, 2015, 33, 11000-11000.	1.6	0