Gabriel Gutiérrez-Alonso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4488200/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Variscan intracrustal recycling by melting of Carboniferous arc-like igneous protoliths (Évora) Tj ETQq1 1	0.7843 <u>1</u> 4 rgBT	/Qverlock 10

 $_{2}$ Detrital zircon ages and provenance of a Cambrian succession in the Sierra Albarrana Domain (SW) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

3	The unique Cambro-Ordovician silicic large igneous province of NW Gondwana: Catastrophic melting of a thinned crust. Gondwana Research, 2022, 106, 164-173.	6.0	5
4	LiDAR Datasets Applied to Roman Gold Mining Studies in NW Iberia. Response to Paper: Roman Gold Mining at "Las Miédolas―(NW Spain): Lidar and Photo Interpretation in the Analysis of "Peines― Geoheritage, 2022, 14, 1.	2.8	1
5	Multiple intrusion stages and mantle sources of the Paleozoic Kuznetsk Alatau alkaline province, Southern Siberia: geochemistry and Permian U–Pb, Sm–Nd ages in the Goryachegorsk ijolite-foyaite intrusion. International Geology Review, 2021, 63, 2215-2231.	2.1	5
6	A tectonic carpet of Variscan flysch at the base of a rootless accretionary prism in northwestern Iberia: U–Pb zircon age constrains from sediments and volcanic olistoliths. Solid Earth, 2021, 12, 835-867.	2.8	5
7	Petrofabric and geochemical features of ultramafic rocks on the example of restite metamorphites of the Kuznetsk Alatau (Western Siberia), olivine cumulates of the Yoko-Dovyren layered massif (Northern Cisbaikalia) and their analogues from ultrabasic xenoliths of the Canary Islands (Spain). Vestnik of Saint Petersburg University Earth Sciences, 2021, 66.	0.4	1
8	Neoproterozoic–paleozoic detrital sources in the Variscan foreland of northern Iberia: primary v. recycled sediments. Geological Society Special Publication, 2020, , SP503-2020-21.	1.3	5
9	The enigmatic curvature of Central Iberia and its puzzling kinematics. Solid Earth, 2020, 11, 1247-1273.	2.8	12
10	An extensive K-bentonite as an indicator of a super-eruption in northern Iberia 477 My ago. IOP Conference Series: Earth and Environmental Science, 2019, 319, 012007.	0.3	0
11	Contrasting metamorphic gradients: Barrovian-type vs. high-pressure metamorphism. An example on the northern margin of Gondwana (NW Iberia). IOP Conference Series: Earth and Environmental Science, 2019, 319, 012015.	0.3	0
11	Contrasting metamorphic gradients: Barrovian-type vs. high-pressure metamorphism. An example on the northern margin of Gondwana (NW Iberia). IOP Conference Series: Earth and Environmental Science, 2019, 319, 012015. Variscan Metamorphism. Regional Geology Reviews, 2019, , 431-495.	0.3	0
11 12 13	Contrasting metamorphic gradients: Barrovian-type vs. high-pressure metamorphism. An example on the northern margin of Gondwana (NW Iberia). IOP Conference Series: Earth and Environmental Science, 2019, 319, 012015. Variscan Metamorphism. Regional Geology Reviews, 2019, , 431-495. Late/Post Variscan Orocline Formation and Widespread Magmatism. Regional Geology Reviews, 2019, , 527-542.	0.3	0 2 11
11 12 13 14	Contrasting metamorphic gradients: Barrovian-type vs. high-pressure metamorphism. An example on the northern margin of Gondwana (NW Iberia). IOP Conference Series: Earth and Environmental Science, 2019, 319, 012015.Variscan Metamorphism. Regional Geology Reviews, 2019, , 431-495.Late/Post Variscan Orocline Formation and Widespread Magmatism. Regional Geology Reviews, 2019, , 527-542.Shaping of intraplate mountain patterns: The Cantabrian orocline legacy in Alpine Iberia. Lithosphere, 2019, 11, 708-721.	0.3 1.2 1.2 1.4	0 2 11 12
11 12 13 14 15	Contrasting metamorphic gradients: Barrovian-type vs. high-pressure metamorphism. An example on the northern margin of Gondwana (NW Iberia). IOP Conference Series: Earth and Environmental Science, 2019, 319, 012015.Variscan Metamorphism. Regional Geology Reviews, 2019, , 431-495.Late/Post Variscan Orocline Formation and Widespread Magmatism. Regional Geology Reviews, 2019, , 527-542.Shaping of intraplate mountain patterns: The Cantabrian orocline legacy in Alpine Iberia. Lithosphere, 2019, 11, 708-721.Gold-bearing Plio-Quaternary deposits: Insights from airborne LiDAR technology into the landscape evolution during the early Roman mining works in north-west Spain. Journal of Archaeological Science: Reports, 2019, 24, 843-855.	0.3 1.2 1.2 1.4	0 2 11 12 9
11 12 13 14 15 16	Contrasting metamorphic gradients: Barrovian-type vs. high-pressure metamorphism. An example on the northern margin of Gondwana (NW Iberia). IOP Conference Series: Earth and Environmental Science, 2019, 319, 012015.Variscan Metamorphism. Regional Geology Reviews, 2019, , 431-495.Late/Post Variscan Orocline Formation and Widespread Magmatism. Regional Geology Reviews, 2019, , 527-542.Shaping of intraplate mountain patterns: The Cantabrian orocline legacy in Alpine Iberia. Lithosphere, 2019, 11, 708-721.Gold-bearing Plio-Quaternary deposits: Insights from airborne LiDAR technology into the landscape evolution during the early Roman mining works in north-west Spain. Journal of Archaeological Science: Reports, 2019, 24, 843-855.Petrologic and thermobarometric study of the RiÃjs schists (NW Iberian Massif). Boletin Geologico Y Minero, 2019, 130, 445-464.	0.3 1.2 1.2 1.4 0.5 0.1	0 2 11 12 9 2
11 12 13 14 15 16 17	Contrasting metamorphic gradients: Barrovian-type vs. high-pressure metamorphism. An example on the northern margin of Gondwana (NW Iberia). IOP Conference Series: Earth and Environmental Science, 2019, 319, 012015.Variscan Metamorphism. Regional Geology Reviews, 2019, , 431-495.Late/Post Variscan Orocline Formation and Widespread Magmatism. Regional Geology Reviews, 2019, , 527-542.Shaping of intraplate mountain patterns: The Cantabrian orocline legacy in Alpine Iberia. Lithosphere, 2019, 11, 708-721.Gold-bearing Plio-Quaternary deposits: Insights from airborne LiDAR technology into the landscape evolution during the early Roman mining works in north-west Spain. Journal of Archaeological Science: Reports, 2019, 24, 843-855.Petrologic and thermobarometric study of the RiÃis schists (NW Iberian Massif). Boletin Geologico Y Minero, 2019, 130, 445-464.Crustal melting and recycling: geochronology and sources of Variscan syn-kinematic anatectic granitoids of the Tormes Dome (Central Iberian Zone). A Uã€"Pb LA-ICP-MS study. International Journal of Earth Sciences, 2018, 107, 985-1004.	0.3 1.2 1.2 1.4 0.5 0.1	0 2 11 12 9 2 21

#	Article	IF	CITATIONS
19	New Perspectives for UAV-Based Modelling the Roman Gold Mining Infrastructure in NW Spain. Minerals (Basel, Switzerland), 2018, 8, 518.	2.0	15
20	Birth and demise of the Rheic Ocean magmatic arc(s): Combined U–Pb and Hf isotope analyses in detrital zircon from SW Iberia siliciclastic strata. Lithos, 2017, 278-281, 383-399.	1.4	51
21	3D digital documentation and image enhancement integration into schematic rock art analysis and preservation: The Castrocontrigo Neolithic rock art (NW Spain). Journal of Cultural Heritage, 2017, 26, 160-166.	3.3	14
22	LA-ICP-MS U-Pb dating of Carboniferous ash layers in the Cantabrian Zone (N Spain): stratigraphic implications. Journal of the Geological Society, 2017, 174, 836-849.	2.1	16
23	U–Pb detrital zircon ages from the Paleozoic Marbella Conglomerate of the Malaguide Complex (Betic) Tj ETQq	1 1 0.784: 1.4	314 rgBT /O
24	The Alejico Carboniferous Forest: a 3D-Terrestrial and UAV-Assisted Photogrammetric Model for Geologic Heritage Preservation. Geoheritage, 2017, 9, 163-173.	2.8	11
25	Episodic melting and magmatic recycling along 50 Ma in the Variscan belt linked to the orogenic evolution in NW Iberia. IOP Conference Series: Earth and Environmental Science, 2017, 110, 012008.	0.3	0
26	Thermodynamic modelling of metamorphic processes: state of the art in pseudosection approach. IOP Conference Series: Earth and Environmental Science, 2017, 110, 012014.	0.3	0
27	Paleomagnetism in Extremadura (Central Iberian zone, Spain) Paleozoic rocks: extensive remagnetizations and further constraints on the extent of the Cantabrian orocline. Journal of Iberian Geology, 2017, 43, 583-600.	1.3	15
28	Paleomagnetism of the Central Iberian curve's putative hinge: Too many oroclines in the Iberian Variscides. Gondwana Research, 2016, 39, 96-113.	6.0	33
29	Interference folding and orocline implications: A structural study of the Ponga Unit, Cantabrian orocline, northern Spain. Lithosphere, 2016, 8, 757-768.	1.4	5
30	High-pressure greenschist to blueschist facies transition in the MaimÃ ³ n Formation (Dominican) Tj ETQq0 0 0 rgB 266-267, 309-331.	T /Overloc 1.4	k 10 Tf 50 3 19
31	Reconciling competing models for the tectono-stratigraphic zonation of the Variscan orogen in Western Europe. Tectonophysics, 2016, 681, 209-219.	2.2	47
32	U/Pb age of a large dacitic block locked in an Early Carboniferous synorogenic mélange in the Parautochthon of NW Iberia: New insights on the structure/sedimentation Variscan interplay. Tectonophysics, 2016, 681, 159-169.	2.2	15
33	Improving archaeological prospection using localized UAVs assisted photogrammetry: An example from the Roman Gold District of the Eria River Valley (NW Spain). Journal of Archaeological Science: Reports, 2016, 5, 509-520.	0.5	41
34	New kinematic constraints on the Cantabrian orocline: A paleomagnetic study from the Peñalba and Truchas synclines, NW Spain. Tectonophysics, 2016, 681, 195-208.	2.2	27
35	Condwanan basement terranes of the Variscan–Appalachian orogen: Baltican, Saharan and West African hafnium isotopic fingerprints in Avalonia, Iberia and the Armorican Terranes. Tectonophysics, 2016, 681, 278-304.	2.2	117
36	Was there a super-eruption on the Gondwanan coast 477 Ma ago?. Tectonophysics, 2016, 681, 85-94.	2.2	30

#	Article	IF	CITATIONS
37	Evidence for multi-cycle sedimentation and provenance constraints from detrital zircon U–Pb ages: Triassic strata of the Lusitanian basin (western Iberia). Tectonophysics, 2016, 681, 318-331.	2.2	16
38	Dating of lithospheric buckling: 40Ar/39Ar ages of syn-orocline strike–slip shear zones in northwestern Iberia. Tectonophysics, 2015, 643, 44-54.	2.2	85
39	Significance of detrital zircons in Siluro-Devonian rocks from Iberia. Journal of the Geological Society, 2015, 172, 309-322.	2.1	27
40	Arc-related Ediacaran magmatism along the northern margin of Gondwana: Geochronology and isotopic geochemistry from northern Iberia. Gondwana Research, 2015, 27, 216-227.	6.0	44
41	Using airborne LiDAR sensing technology and aerial orthoimages to unravel roman water supply systems and gold works in NW Spain (Eria valley, León). Journal of Archaeological Science, 2015, 53, 356-373.	2.4	45
42	The Ediacaran–Early Cambrian detrital zircon record of NW Iberia: possible sources and paleogeographic constraints. International Journal of Earth Sciences, 2014, 103, 1335-1357.	1.8	106
43	Isotope (U–Pb, Sm–Nd, Rb–Sr) geochronology of alkaline basic plutons of the Kuznetsk Alatau. Russian Geology and Geophysics, 2014, 55, 1264-1277.	0.7	21
44	Provenance variability along the Early Ordovician north Gondwana margin: Paleogeographic and tectonic implications of U-Pb detrital zircon ages from the Armorican Quartzite of the Iberian Variscan belt. Bulletin of the Geological Society of America, 2014, 126, 702-719.	3.3	89
45	The Significance of Changes of Source Areas During Carboniferous Turbiditic Deposition (Southwestern Iberia). Springer Geology, 2014, , 741-745.	0.3	0
46	Provenance analysis of the Paleozoic sequences of the northern Gondwana margin in NW Iberia: Passive margin to Variscan collision and orocline development. Gondwana Research, 2013, 23, 1089-1103.	6.0	87
47	Investigating the kinematics of local thrust sheet rotation in the limb of an orocline: a paleomagnetic and structural analysis of the Esla tectonic unit, Cantabrian–Asturian Arc, NW Iberia. International Journal of Earth Sciences, 2013, 102, 43-60.	1.8	17
48	Mathematica code for least-squares cone fitting and equal-area stereonet representation. Computers and Geosciences, 2013, 54, 203-210.	4.2	8
49	Tectonic evolution of NW Iberia during the Paleozoic inferred from the geochemical record of detrital rocks in the Cantabrian Zone. Lithos, 2013, 182-183, 211-228.	1.4	29
50	Oroclines: Thick and thin. Bulletin of the Geological Society of America, 2013, 125, 643-663.	3.3	113
51	Kinematic constraints on buckling a lithospheric-scale orocline along the northern margin of Gondwana: A geologic synthesis. Tectonophysics, 2013, 582, 25-49.	2.2	127
52	Analogue modeling of lithospheric-scale orocline buckling: Constraints on the evolution of the Iberian-Armorican Arc. Bulletin of the Geological Society of America, 2012, 124, 1293-1309.	3.3	51
53	Fluid-driven low-grade metamorphism in polydeformed rocks of Avalonia (Arisaig Group, Nova Scotia,) Tj ETQq1 1	0,784314 1.2	rgBT /Overl
54	Oroclines of the Variscan orogen of Iberia: Paleocurrent analysis and paleogeographic implications.	4.4	86

Earth and Planetary Science Letters, 2012, 329-330, 60-70.

#	Article	IF	CITATIONS
55	A brief history of the Rheic Ocean. Geoscience Frontiers, 2012, 3, 125-135.	8.4	225
56	The missing Rheic Ocean magmatic arcs: Provenance analysis of Late Paleozoic sedimentary clastic rocks of SW Iberia. Gondwana Research, 2012, 22, 882-891.	6.0	85
57	Conical folding in the core of an orocline. A geometric analysis from the Cantabrian Arc (Variscan) Tj ETQq1 1 0.	784314 rg 2.3	BT /Overlock
58	Buckling an orogen: The Cantabrian Orocline. GSA Today, 2012, , 4-9.	2.0	77
59	Diachronous postâ€orogenic magmatism within a developing orocline in Iberia, European Variscides. Tectonics, 2011, 30, .	2.8	143
60	Orocline timing through joint analysis: Insights from the Ibero-Armorican Arc. Tectonophysics, 2011, 507, 31-46.	2.2	77
61	The origin of tablet boudinage: Results from experiments using power–law rock analogs. Tectonophysics, 2011, 510, 327-336.	2.2	26
62	Formation of chocolate-tablet boudins in a foreland fold and thrust belt: A case study from the external Variscides (Almograve, Portugal). Journal of Structural Geology, 2011, 33, 1639-1649.	2.3	27
63	Iberian late-Variscan granitoids: Some considerations on crustal sources and the significance of "mantle extraction ages― Lithos, 2011, 123, 121-132.	1.4	45
64	Early Jurassic magmatism on the northern margin of CAMP: Derivation from a Proterozoic sub-continental lithospheric mantle. Lithos, 2011, 123, 158-164.	1.4	20
65	Lithospheric delamination in the core of Pangea: Sm-Nd insights from the Iberian mantle. Geology, 2011, 39, 155-158.	4.4	130
66	Evolution of the Rheic Ocean. Gondwana Research, 2010, 17, 194-222.	6.0	540
67	The North American Cordillera and West European Variscides: Contrasting interpretations of similar mountain systems. Gondwana Research, 2010, 17, 516-525.	6.0	27
68	New time constraints on lithospheric-scale oroclinal bending of the Ibero-Armorican Arc: a palaeomagnetic study of earliest Permian rocks from Iberia. Journal of the Geological Society, 2010, 167, 127-143.	2.1	90
69	Diagenesis to metamorphism transition in an episutural basin: the late Paleozoic St. Mary's Basin, Nova Scotia, Canada. Canadian Journal of Earth Sciences, 2010, 47, 121-135.	1.3	13
70	Rheic Ocean mafic complexes: overview and synthesis. Geological Society Special Publication, 2009, 327, 343-369.	1.3	21
71	Supercontinent reconstruction from recognition of leading continental edges. Geology, 2009, 37, 595-598.	4.4	18
72	3D Digital Surveying and Modelling of Cave Geometry: Application to Paleolithic Rock Art. Sensors, 2009, 9, 1108-1127.	3.8	54

#	Article	IF	CITATIONS
73	Factors affecting finite strain estimation in low-grade, low-strain clastic rocks. Journal of Structural Geology, 2009, 31, 1586-1596.	2.3	20
74	Self-subduction of the Pangaean globalÂplate. Nature Geoscience, 2008, 1, 549-553.	12.9	145
75	Rifting along the northern Gondwana margin and the evolution of the Rheic Ocean: A Devonian age for the El Castillo volcanic rocks (Salamanca, Central Iberian Zone). Tectonophysics, 2008, 461, 157-165.	2.2	43
76	Probing crustal and mantle lithosphere origin through Ordovician volcanic rocks along the Iberian passive margin of Gondwana. Tectonophysics, 2008, 461, 166-180.	2.2	76
77	Neoproterozoic-early Palaeozoic tectonostratigraphy and palaeogeography of the peri-Gondwanan terranes: Amazonian v. West African connections. Geological Society Special Publication, 2008, 297, 345-383.	1.3	178
78	The origin of the Variscan upper allochthons in the Ortegal Complex, northwestern Iberia: Sm–Nd isotopic constraints on the closure of the Rheic Ocean. Canadian Journal of Earth Sciences, 2008, 45, 651-668.	1.3	23
79	Tectonic Plates Come Apart at the Seams. American Scientist, 2008, 96, 129.	0.1	5
80	U-Pb depositional age for the upper Barrios Formation (Armorican Quartzite facies) in the Cantabrian zone of Iberia: Implications for stratigraphic correlation and paleogeography. , 2007, , .		23
81	Illitic substitution in micas of very low-grade metamorphic clastic rocks. European Journal of Mineralogy, 2006, 18, 59-69.	1.3	23
82	Superposition of shear zones during orogenic development: an example from the NW Variscan Belt (Viana do Castelo, NW Portugal). Journal of Structural Geology, 2006, 28, 1327-1337.	2.3	4
83	Origin of the Rheic Ocean: Rifting along a Neoproterozoic suture?. Geology, 2006, 34, 325.	4.4	304
84	Amazonian Mesoproterozoic basement in the core of the Ibero-Armorican Arc: 40Ar/39Ar detrital mica ages complement the zircon's tale. Geology, 2005, 33, 637.	4.4	40
85	Orocline triggered lithospheric delamination. , 2004, , 121-130.		45
86	The structure and the phyllosilicates (chemistry, crystallinity and texture) of Talas Ala-Tau (Tien Shan,) Tj ETQqO 103-127.	0 0 rgBT /0 2.2	Overlock 10 T 33
87	Terrane accretion and dispersal in the northern Gondwana margin. An Early Paleozoic analogue of a long-lived active margin. Tectonophysics, 2003, 365, 221-232.	2.2	121
88	Advances in U-Pb geochronology using a frequency quintupled Nd:YAG based laser ablation system (? =) Tj ETQc	10 0 <u>3 0</u> rgBT	[/Qverlock 10
89	Assembly of the Armorica Microplate: A Strikeâ€6lip Terrane Delivery? Evidence from Uâ€Pb Ages of Detrital Zircons. Journal of Geology, 2002, 110, 619-626.	1.4	70
90	The importance of along-margin terrane transport in northern Gondwana: insights from detrital zircon parentage in Neoproterozoic rocks from Iberia and Brittany. Earth and Planetary Science	4.4	188

Letters, 2002, 204, 75-88.

#	Article	IF	CITATIONS
91	Variscan collisional magmatism and deformation in NW Iberia: constraints from U–Pb geochronology of granitoids. Journal of the Geological Society, 2000, 157, 565-576.	2.1	157
92	New ideas on the Proterozoic-Early Palaeozoic evolution of NW Iberia: insights from U–Pb detrital zircon ages. Precambrian Research, 2000, 102, 185-206.	2.7	170
93	Out-of-Sequence Normal Faults Resulting in Local Contractional Geometry: An Example from the Arava Valley, Southern Israel. International Geology Review, 1999, 41, 967-980.	2.1	1
94	Structures and mechanisms associated with development of a fold in the Cantabrian Zone thrust belt, NW Spain. Journal of Structural Geology, 1999, 21, 653-670.	2.3	34
95	Granite emplacement in orogenic compressional conditions: the La Alberca–Béjar granitic area (Spanish Central System, Variscan Iberian Belt). Journal of Structural Geology, 1999, 21, 1419-1440.	2.3	31
96	Crustal sources in Lower Palaeozoic rocks from NW Iberia: insights from laser ablation U–Pb ages of detrital zircons. Journal of the Geological Society, 1999, 156, 1065-1068.	2.1	44
97	Geochronology and geochemistry of the Pola de Allande granitoids (northern Spain): their bearing on the Cadomian-Avalonian evolution of northwest Iberia. Canadian Journal of Earth Sciences, 1998, 35, 1439-1453.	1.3	59
98	Diachronous Variscan tectonothermal activity in the NW Iberian Massif: Evidence from 40Ar/39Ar dating of regional fabrics. Tectonophysics, 1997, 277, 307-337.	2.2	256
99	Transfer of displacement from multiple slip zones to a major detachment in an extensional regime: Example from the Dead Sea rift, Israel. Bulletin of the Geological Society of America, 1997, 109, 1021-1035.	3.3	27
100	Influence of mechanical stratigraphy and kinematics on fault scaling relations. Journal of Structural Geology, 1997, 19, 171-183.	2.3	119
101	Geometry of inverted faults and related folds in the Monterey formation: implications for the structural evolution of the southern Santa Maria basin, California. Journal of Structural Geology, 1997, 19, 1303-1321.	2.3	12
102	Thrust emplacement of the Hispaniola peridotite belt: Orogenic expression of the mid-Cretaceous Caribbean arc polarity reversal?. Geology, 1996, 24, 1143.	4.4	87
103	Strain partitioning in the footwall of the Somiedo Nappe: structural evolution of the Narcea Tectonic Window, NW Spain. Journal of Structural Geology, 1996, 18, 1217-1229.	2.3	40
104	White-mica 'crystallinity', finite strain and cleavage development across a large Variscan structure, NW Spain. Journal of the Geological Society, 1996, 153, 287-299.	2.1	46
105	Orocline formation at the core of Pangea: A structural study of the Cantabrian orocline, NW Iberian Massif. Lithosphere, 0, , L461.1.	1.4	13
106	A virtual tour of the Ibero-Armorican orocline. Journal of the Virtual Explorer, 0, 43, .	0.0	3